1/5x+10=1/2x+20

Simple and best practice solution for 1/5x+10=1/2x+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+10=1/2x+20 equation:



1/5x+10=1/2x+20
We move all terms to the left:
1/5x+10-(1/2x+20)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 2x+20)!=0
x∈R
We get rid of parentheses
1/5x-1/2x-20+10=0
We calculate fractions
2x/10x^2+(-5x)/10x^2-20+10=0
We add all the numbers together, and all the variables
2x/10x^2+(-5x)/10x^2-10=0
We multiply all the terms by the denominator
2x+(-5x)-10*10x^2=0
Wy multiply elements
-100x^2+2x+(-5x)=0
We get rid of parentheses
-100x^2+2x-5x=0
We add all the numbers together, and all the variables
-100x^2-3x=0
a = -100; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·(-100)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*-100}=\frac{0}{-200} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*-100}=\frac{6}{-200} =-3/100 $

See similar equations:

| -6+4x=-4x+10 | | 13t+6-6t=34 | | 10x+4x=108 | | (2x+7)+(2x−16)+(6x+19)=180 | | 9(t=2)=3(t-2) | | 10x+5=-5(5+x) | | -2x-20=-14 | | -6x-20=-2+4-12x | | 12x+22=2x-8 | | 4x-7=x/2 | | 6+1-k=256 | | 4x+-10=x+30 | | 0.75n=16 | | 2n-3=2+3n | | 400-5x=340 | | (-2/5)x^2+3/5=-1 | | 6x7=5x | | x=2x-50/x | | 3x+12=1/2x+2 | | -0.5x=38.5 | | 13-3x=5(x-1)+2 | | 3^x=7.5 | | 3=x+6-4x | | 2(m)+4(4m+2)=108 | | 3/8=5/m | | -8-3k=-8(1-8k) | | 2(12x11)=22 | | -2(-8-b)=-3b+4(b+3) | | 2(5+2n)=2(3+n) | | (1/3)x^2+15=27 | | 4(3-v)=-4(v-))-v | | 3^-x=7.5 |

Equations solver categories