1/5x+2/5x+180=x

Simple and best practice solution for 1/5x+2/5x+180=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+2/5x+180=x equation:



1/5x+2/5x+180=x
We move all terms to the left:
1/5x+2/5x+180-(x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
-1x+1/5x+2/5x+180=0
We multiply all the terms by the denominator
-1x*5x+180*5x+1+2=0
We add all the numbers together, and all the variables
-1x*5x+180*5x+3=0
Wy multiply elements
-5x^2+900x+3=0
a = -5; b = 900; c = +3;
Δ = b2-4ac
Δ = 9002-4·(-5)·3
Δ = 810060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{810060}=\sqrt{4*202515}=\sqrt{4}*\sqrt{202515}=2\sqrt{202515}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(900)-2\sqrt{202515}}{2*-5}=\frac{-900-2\sqrt{202515}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(900)+2\sqrt{202515}}{2*-5}=\frac{-900+2\sqrt{202515}}{-10} $

See similar equations:

| -2(=-4)=10-2t | | 7x-22=-64 | | r-6=-26 | | 8x+23=12x+3 | | -11+b=-8 | | (2x-12)+(x+32)+(x)=180 | | 8.4=-t/3.5 | | -64=4x+4 | | -7+f/2=-2 | | -247=-13m | | 9m-10=6m+5m+10 | | 7-2c=2(c+1) | | -247=13m | | 6+2x=15+1x | | 3(8-b)+3.7b=-5 | | 50x+25=800 | | h+14.4=-14.4 | | 9p+10=-6+7p | | 1x+17=35 | | -1x+-5=-11 | | 180=(2x+24)+X | | 21+2w=200 | | -1x+-5=-1 | | 32+8x=40+4x | | 4c+12=20 | | 3(x+5)^2/3=48 | | -3j+4=-5j | | F(x)=x-8÷7 | | m/(-11)+10=-10 | | 10+2v=v | | 6-2(x+3)=-12 | | 2+1x=2x |

Equations solver categories