1/5x+2=3-1/7x

Simple and best practice solution for 1/5x+2=3-1/7x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+2=3-1/7x equation:



1/5x+2=3-1/7x
We move all terms to the left:
1/5x+2-(3-1/7x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 7x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x-(-1/7x+3)+2=0
We get rid of parentheses
1/5x+1/7x-3+2=0
We calculate fractions
7x/35x^2+5x/35x^2-3+2=0
We add all the numbers together, and all the variables
7x/35x^2+5x/35x^2-1=0
We multiply all the terms by the denominator
7x+5x-1*35x^2=0
We add all the numbers together, and all the variables
12x-1*35x^2=0
Wy multiply elements
-35x^2+12x=0
a = -35; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-35)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-35}=\frac{-24}{-70} =12/35 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-35}=\frac{0}{-70} =0 $

See similar equations:

| -5/2+x/2=-9 | | -4x-5(x+4)=-15-8x | | -12=-2n-2n | | 3/2+y/2=6 | | -16d=15-17d | | X/5+3/5=x/7-3/5 | | -3(k-8)-(k+5)=22 | | x÷22=140 | | (4x)-1=(4x)-7 | | Y/4+1/7=y/7-1/7 | | -1-u=3u-9 | | 2/5z=-1/10 | | -2/1r+1/3-5/2r=-25/6 | | 3x+9+5=81 | | 9w-7=3w-2+5w | | 15=5(2m−5) | | 12-3(2w+1)=11w-3(12+w) | | 3=12/x2 | | (2x+7)*3=25 | | 7/8z=-1/16 | | -2v=-5v+9 | | 5x+2+3x-10=90 | | 208=8×6×w | | 3x/2-4=8 | | 10-1=-4t-10-10 | | 5(3x-8)-2=5(x-2)+8 | | 91=-7(3a-1 | | 7k=8k-6 | | 3(x+2)=6(x-1)+3 | | (x+40)²+x²=(2x-40)² | | 30-9b=-20(-16b-3) | | -6x=-6x |

Equations solver categories