1/5x+3=2/3x+7

Simple and best practice solution for 1/5x+3=2/3x+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+3=2/3x+7 equation:



1/5x+3=2/3x+7
We move all terms to the left:
1/5x+3-(2/3x+7)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x+7)!=0
x∈R
We get rid of parentheses
1/5x-2/3x-7+3=0
We calculate fractions
3x/15x^2+(-10x)/15x^2-7+3=0
We add all the numbers together, and all the variables
3x/15x^2+(-10x)/15x^2-4=0
We multiply all the terms by the denominator
3x+(-10x)-4*15x^2=0
Wy multiply elements
-60x^2+3x+(-10x)=0
We get rid of parentheses
-60x^2+3x-10x=0
We add all the numbers together, and all the variables
-60x^2-7x=0
a = -60; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·(-60)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*-60}=\frac{0}{-120} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*-60}=\frac{14}{-120} =-7/60 $

See similar equations:

| 19q+q-18q-q+3q=20 | | 3y=2y+70 | | 0,375x-12=15 | | 13a=6= | | 4x+2(3x-2)=-54 | | 2/4b+4=-6 | | 2t+2t-2t-t=14 | | 200m+24=1845 | | 9a-7a=3a-33=+2a | | (X)=-2x-11 | | 2n-2n+5n-n=4 | | -3d-3=6d-18 | | 3(-4.5+.1.5y)-y=4 | | x/40=80 | | 3/4m=8 | | 6=4x+Y=7 | | n-n+3n=12 | | 100m+12=949.88 | | 6t+2t-4t+t+3t=16 | | 6n^2+210=72n | | 4(2x-7)2x=-10 | | 3x-(70/11)=70 | | (F)=4x-17 | | 4k-2k=14 | | F(x)=-2x-11 | | 4(x+6)-4=28 | | 3m-8=5m+12 | | 5s-4s=4 | | 3/4c-18=1/4c-4 | | 3n+24=2n+26 | | 3x+8;x=2 | | 3x+8;x=2 |

Equations solver categories