1/5x+4=0.6x+8

Simple and best practice solution for 1/5x+4=0.6x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+4=0.6x+8 equation:



1/5x+4=0.6x+8
We move all terms to the left:
1/5x+4-(0.6x+8)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
1/5x-0.6x-8+4=0
We multiply all the terms by the denominator
-(0.6x)*5x-8*5x+4*5x+1=0
We add all the numbers together, and all the variables
-(+0.6x)*5x-8*5x+4*5x+1=0
We multiply parentheses
-0x^2-8*5x+4*5x+1=0
Wy multiply elements
-0x^2-40x+20x+1=0
We add all the numbers together, and all the variables
-1x^2-20x+1=0
a = -1; b = -20; c = +1;
Δ = b2-4ac
Δ = -202-4·(-1)·1
Δ = 404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{404}=\sqrt{4*101}=\sqrt{4}*\sqrt{101}=2\sqrt{101}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{101}}{2*-1}=\frac{20-2\sqrt{101}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{101}}{2*-1}=\frac{20+2\sqrt{101}}{-2} $

See similar equations:

| 0.04(y+2)+0.14y=0.08-0.7 | | 15x-5=x+19 | | 6(x+6)=4(2x-1) | | -16.54+8.8b-11.8b=0.5b-18.29 | | a=10,000(1+0.06/100)^5 | | 2(x+5)=4(2x-1) | | 61/4=n-41/4 | | 7x+6=-8+5x+20 | | x/2–12=‐14 | | 3(x+5)=4(9x-2 | | -15+2j=9j+20+14 | | 16-3.50=2.50r | | 3(x+5)=4(3x-5) | | c/9-8=-5 | | 10k-20=7k+7 | | 3(x+5)=4(x-5) | | 18+x=-42 | | 0.5x-3=3(4-1.5x) | | 6x+1=2x+27 | | 16.06-6.8d=-10.6d-13.2 | | -7c+7=-11-10c | | 5-6p=4 | | 2(x+4)-5(10-7x)=3x+8-21 | | -15x-40=6x-70 | | 2x+8=12x-6 | | 15+16w=15w | | 12m-2=-90 | | 15+1w=15w | | -8q-4=-2q+11-9q | | u+56=3u | | 0.15+x=0.05.x | | 7+5w=8-4+4w |

Equations solver categories