1/5x+50=-x+10

Simple and best practice solution for 1/5x+50=-x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+50=-x+10 equation:



1/5x+50=-x+10
We move all terms to the left:
1/5x+50-(-x+10)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x-(-1x+10)+50=0
We get rid of parentheses
1/5x+1x-10+50=0
We multiply all the terms by the denominator
1x*5x-10*5x+50*5x+1=0
Wy multiply elements
5x^2-50x+250x+1=0
We add all the numbers together, and all the variables
5x^2+200x+1=0
a = 5; b = 200; c = +1;
Δ = b2-4ac
Δ = 2002-4·5·1
Δ = 39980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39980}=\sqrt{4*9995}=\sqrt{4}*\sqrt{9995}=2\sqrt{9995}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-2\sqrt{9995}}{2*5}=\frac{-200-2\sqrt{9995}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+2\sqrt{9995}}{2*5}=\frac{-200+2\sqrt{9995}}{10} $

See similar equations:

| x1/2=8 | | Y=-5x0+3 | | 12+7x=2(−x+7)−65 | | y+5.487=9.46 | | 10=5x=10/5 | | 5(s-2)-3=-28 | | 4+c=32 | | –20u+13=–7 | | 1.5x+5=35 | | 1.5x+5=3x-10 | | 2(5x-1)+2x=13x+5 | | 800=60x(0.025) | | -2s=-8-3s | | 2+d=21 | | 3x-x-1=4(2x-1) | | 0.33c=2.97 | | 5-m/4=-2 | | 3(2n-7)=9n | | -22=3x+3 | | 3x-12+12x-108=5x+10 | | n-6.87=3.12 | | 6=x/8 | | -25x+6=-9 | | 6.4=x-23 | | 1.25n+2.5=5.25 | | 33=9+w | | m-(-16)=36 | | 2-3x=6x+1 | | 25+t=45 | | 7z=42;z= | | (10)(2x+1)-8=250 | | 16-25x=-9 |

Equations solver categories