1/5x+5x=18-7x

Simple and best practice solution for 1/5x+5x=18-7x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+5x=18-7x equation:



1/5x+5x=18-7x
We move all terms to the left:
1/5x+5x-(18-7x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x+5x-(-7x+18)=0
We add all the numbers together, and all the variables
5x+1/5x-(-7x+18)=0
We get rid of parentheses
5x+1/5x+7x-18=0
We multiply all the terms by the denominator
5x*5x+7x*5x-18*5x+1=0
Wy multiply elements
25x^2+35x^2-90x+1=0
We add all the numbers together, and all the variables
60x^2-90x+1=0
a = 60; b = -90; c = +1;
Δ = b2-4ac
Δ = -902-4·60·1
Δ = 7860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7860}=\sqrt{4*1965}=\sqrt{4}*\sqrt{1965}=2\sqrt{1965}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-2\sqrt{1965}}{2*60}=\frac{90-2\sqrt{1965}}{120} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+2\sqrt{1965}}{2*60}=\frac{90+2\sqrt{1965}}{120} $

See similar equations:

| 7-10b=6 | | 1/5x+5x=17-7x | | A=t(t+2)-(2-t)(t-1)+3(2t-1) | | 10=u-5-9 | | (8x+7)+(6x+5)=180 | | 5(7x-2)=0 | | 5t+4=10 | | 51+3+5k=58 | | 5(6+g)=50 | | 7x-5+1x-4=2x+9+6x | | x+6=125 | | (3x/4)+2x=11 | | 1/4(x-84)=9+4x | | 10(x+7)=140 | | 10x+x*x=80 | | 2/3x+15=1/3x+60 | | 30+2x=5(-x+2)-15 | | 5(2x+3)-4=3(3x-1)+x | | 3(a+912)=3(a+712)+ | | (8-2r)/3=2 | | 8*x^2-20*x+5=0 | | 1/4x+5/3x-4=2-1/12 | | 1.9+6p=7,9 | | 3/4s-3/4=s/8 | | 6x-4=169 | | 6x-4=8+3x-5 | | m/3-8=4 | | -14x-3=-2(7x+9)+15 | | D=56x120 | | 5x+18-4=-3x+2-16x | | 2y-3(-9+3y)=-8 | | 18v^2=45v |

Equations solver categories