1/5x+6=3/4x+5

Simple and best practice solution for 1/5x+6=3/4x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+6=3/4x+5 equation:



1/5x+6=3/4x+5
We move all terms to the left:
1/5x+6-(3/4x+5)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 4x+5)!=0
x∈R
We get rid of parentheses
1/5x-3/4x-5+6=0
We calculate fractions
4x/20x^2+(-15x)/20x^2-5+6=0
We add all the numbers together, and all the variables
4x/20x^2+(-15x)/20x^2+1=0
We multiply all the terms by the denominator
4x+(-15x)+1*20x^2=0
Wy multiply elements
20x^2+4x+(-15x)=0
We get rid of parentheses
20x^2+4x-15x=0
We add all the numbers together, and all the variables
20x^2-11x=0
a = 20; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·20·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*20}=\frac{0}{40} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*20}=\frac{22}{40} =11/20 $

See similar equations:

| 2x+15=11−4x | | 3m*2=5 | | 7x+50=17/2x+11 | | 22x=20x+14 | | 9=v/3=3 | | 20=40•z | | 3x+4+5x=4(x+1) | | 7(z+2)=7+7z+6-z | | 6t=3(5t-4)=12(2t-5 | | 2=4(x-2)+x | | 2x-8+9x=10x-5 | | 5x+3x-4=9 | | 2(5x-8)-8=8(x-3)+6 | | Y=0.1-0.005x+6 | | -1/2(16-2n)=11 | | (x-8)=2x+2x | | 21(7-b)+6b=57 | | 3x-5x=-×+3 | | 2/x+9=13 | | −(2x−1)−8=−27+2x | | 7x+1/3=5 | | 3t-2-t-5t=-1 | | 12=6x+18x | | -12+5x=6+5(x-2) | | (X+2)/12=1/6+(x-1)/3 | | (4x+6x)+(6x-10)=0 | | 6+3+34=h | | x-39=9+5x | | 7(b-3)=8b+2+3 | | ​m+12=–5 | | 3(t-4)=15 | | x+4+3x=4(x+1) |

Equations solver categories