If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/5x+8-3/5=1/3x-3
We move all terms to the left:
1/5x+8-3/5-(1/3x-3)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x-3)!=0We get rid of parentheses
x∈R
1/5x-1/3x+3+8-3/5=0
We calculate fractions
3x/375x^2+(-125x)/375x^2+(-9x)/375x^2+3+8=0
We add all the numbers together, and all the variables
3x/375x^2+(-125x)/375x^2+(-9x)/375x^2+11=0
We multiply all the terms by the denominator
3x+(-125x)+(-9x)+11*375x^2=0
Wy multiply elements
4125x^2+3x+(-125x)+(-9x)=0
We get rid of parentheses
4125x^2+3x-125x-9x=0
We add all the numbers together, and all the variables
4125x^2-131x=0
a = 4125; b = -131; c = 0;
Δ = b2-4ac
Δ = -1312-4·4125·0
Δ = 17161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{17161}=131$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-131)-131}{2*4125}=\frac{0}{8250} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-131)+131}{2*4125}=\frac{262}{8250} =131/4125 $
| 118-w=239 | | 8(3x-5)=6(3x-4) | | 2(x+4)=2(x+3) | | 24x+5=20x-1 | | 2x²-2x-4=0 | | X2-3x-50=58 | | -r=-3(4-r) | | 90=3x-15+2x | | (3x+3)/(4x+4)=3/4 | | 4+x=-x+2 | | 2x+2x/2+3x-300=6300 | | 20+4b=-3(4-4b) | | 8x=-7x-120 | | (3x+3)/(4x+4)=0 | | 1.6(0.8x+45)=240 | | -m-2(2m+3)=3m+10 | | 12x+4-5x+7=6x+4x+17 | | (1/2)(8x+16)=(1/3)(24x-12) | | -4(2+3n)=19-3n | | 3-7(1-2x)-5x=12x+3 | | 5x+5=− | | 3a+7+2a.a=5 | | 250+.02s=125+.06s | | 23x-6-2x=18-15x | | k-4×13=4 | | 1/2(6x-12)=4 | | 7q=1 | | 4(g-5)=2g-1 | | 4.o5=0.45 | | 3x-6+2x=6+5x | | 36+7u=11u | | (3a+1)/(3a-1)=10 |