1/5x-0.4=1/10x+0.6

Simple and best practice solution for 1/5x-0.4=1/10x+0.6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x-0.4=1/10x+0.6 equation:



1/5x-0.4=1/10x+0.6
We move all terms to the left:
1/5x-0.4-(1/10x+0.6)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x+0.6)!=0
x∈R
We get rid of parentheses
1/5x-1/10x-0.6-0.4=0
We calculate fractions
10x/50x^2+(-5x)/50x^2-0.6-0.4=0
We add all the numbers together, and all the variables
10x/50x^2+(-5x)/50x^2-1=0
We multiply all the terms by the denominator
10x+(-5x)-1*50x^2=0
Wy multiply elements
-50x^2+10x+(-5x)=0
We get rid of parentheses
-50x^2+10x-5x=0
We add all the numbers together, and all the variables
-50x^2+5x=0
a = -50; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-50)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-50}=\frac{-10}{-100} =1/10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-50}=\frac{0}{-100} =0 $

See similar equations:

| a^2+12a-8=0 | | 3/4x(x+1/4)=2(-3x+4) | | 8x=14×18 | | 10x-3=6x-6 | | 180x+180=180 | | -6/3x=8/10 | | 113x+67=180 | | 8x-18+4x+12=180 | | 2/9x=6/10 | | 3/4x-4/4=8 | | 8/5x=6/5 | | x+6/5=2/8 | | 61 4(x−2 3)=93 8 | | -6(x-3)+2x=-24+2x | | 111/4+9d=72 | | 4(x-20+5=6x-4 | | x-2/5=8/9 | | 6(b-1)=-14+4b | | 4x-40=90 | | 5x+24-15x=14 | | x*5=6*228 | | 85-2g=57 | | 85-2g=61 | | 2x-8x-13=7 | | 3x+10+2x=60 | | x^2+(1/x^2)=7 | | 34-4x=-4(x-7) | | 9+5(2c-1)=0 | | 10/3=x/(−25​) | | 6y-2(y-2)=5=0 | | 3h+5=0h+25=10 | | 10-2r=0 |

Equations solver categories