1/5x-1.6=x-16

Simple and best practice solution for 1/5x-1.6=x-16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x-1.6=x-16 equation:



1/5x-1.6=x-16
We move all terms to the left:
1/5x-1.6-(x-16)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
1/5x-x+16-1.6=0
We multiply all the terms by the denominator
-x*5x+16*5x-(1.6)*5x+1=0
We multiply parentheses
-x*5x+16*5x-8x+1=0
Wy multiply elements
-5x^2+80x-8x+1=0
We add all the numbers together, and all the variables
-5x^2+72x+1=0
a = -5; b = 72; c = +1;
Δ = b2-4ac
Δ = 722-4·(-5)·1
Δ = 5204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5204}=\sqrt{4*1301}=\sqrt{4}*\sqrt{1301}=2\sqrt{1301}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-2\sqrt{1301}}{2*-5}=\frac{-72-2\sqrt{1301}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+2\sqrt{1301}}{2*-5}=\frac{-72+2\sqrt{1301}}{-10} $

See similar equations:

| -18-8d=-11d | | 2=b+1/3 | | 12-(x+3=10 | | b/12=-7/12 | | n3-n+990=0 | | x/x+3=x+3/12 | | 6(x+1)=2(x+1) | | -x+3=-1/4 | | -7/3×-2/3=3/4x+2/3 | | 2m^2+8m-10=0 | | -2/3•h=-22 | | 6(x)(2.5x)=2160 | | 5x-3-2x-(-2x+1)=2x-2-(-x+4) | | -11=-(3n+5) | | 2t-12=-13 | | -3+-4q=-19 | | 10x-7=35 | | -5x+25=-20 | | 12^8x=5 | | 17-12w=10 | | -7x+4-3x-10=-(10x-4)+6 | | 3(f-4)+9=15 | | 3b-b=20 | | x-15(-5)=-120 | | 8+2n=9n+8 | | 3x-4-7x+6=4+x+3x+6 | | X+3=x2 | | (x–2)=–1/4(x–8) | | 71=15-(6z-5) | | -4(u-19)=16 | | 4^x-5=121(3^x) | | -3+2,3x=-27 |

Equations solver categories