1/5x-1/8x+1/40=5

Simple and best practice solution for 1/5x-1/8x+1/40=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x-1/8x+1/40=5 equation:



1/5x-1/8x+1/40=5
We move all terms to the left:
1/5x-1/8x+1/40-(5)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
determiningTheFunctionDomain 1/5x-1/8x-5+1/40=0
We calculate fractions
320x^2/6400x^2+1280x/6400x^2+(-800x)/6400x^2-5=0
We multiply all the terms by the denominator
320x^2+1280x+(-800x)-5*6400x^2=0
Wy multiply elements
320x^2-32000x^2+1280x+(-800x)=0
We get rid of parentheses
320x^2-32000x^2+1280x-800x=0
We add all the numbers together, and all the variables
-31680x^2+480x=0
a = -31680; b = 480; c = 0;
Δ = b2-4ac
Δ = 4802-4·(-31680)·0
Δ = 230400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{230400}=480$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(480)-480}{2*-31680}=\frac{-960}{-63360} =1/66 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(480)+480}{2*-31680}=\frac{0}{-63360} =0 $

See similar equations:

| -4(-x+2)=3(x-2) | | 12x=63x | | X-(4/3x)=(-1/3) | | 322=89y-78+3y | | -4x=61 | | 11/3+1/2t=4 | | 5(3x-1)+3(14-2x)-2(4x+2)=-1 | | (x+2)^2+(x+2-12)=0 | | m+(4m-2)=10 | | 9/13x+1/2=1/3-4/13x+1/3 | | 4.4q-3.7-5.7q=-0.3q-3.7 | | 2x=-3/7 | | X+6/8=5/4+x-3/5 | | 6.9r-6=5.9r-6 | | X+9/16=3/8+x-6/3 | | (10x)/5=32 | | X/x-2=6/x-2 | | 4x+2(x-1)=8x-5(x-2) | | 8x/11=4x/7+12 | | 8x/11=4x/7 | | 12x+1=16x-7 | | 17=3(x-2)-(x-5) | | 7^{3x}-1=19 | | 5x-4=-4x+18 | | 48=1/2*12h | | 5x-6=9;3 | | N-1/3=2n-4 | | 2m/4+m/3=5/3 | | 6-5x=7x-10 | | q=50-2.5 | | +6-5x=+7x-10 | | 3y-y=1/2 |

Equations solver categories