1/5x-23=x+13

Simple and best practice solution for 1/5x-23=x+13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x-23=x+13 equation:



1/5x-23=x+13
We move all terms to the left:
1/5x-23-(x+13)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
1/5x-x-13-23=0
We multiply all the terms by the denominator
-x*5x-13*5x-23*5x+1=0
Wy multiply elements
-5x^2-65x-115x+1=0
We add all the numbers together, and all the variables
-5x^2-180x+1=0
a = -5; b = -180; c = +1;
Δ = b2-4ac
Δ = -1802-4·(-5)·1
Δ = 32420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32420}=\sqrt{4*8105}=\sqrt{4}*\sqrt{8105}=2\sqrt{8105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-2\sqrt{8105}}{2*-5}=\frac{180-2\sqrt{8105}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+2\sqrt{8105}}{2*-5}=\frac{180+2\sqrt{8105}}{-10} $

See similar equations:

| M^2+9m=-8 | | 1/3y-6=1/8y | | x^2-60000x=900000000 | | x^2-60000x-900000000=0 | | -7=12n-(4) | | x=x=4-2x | | 13+12d=13 | | 3x2-9x-2=0 | | 2x+1÷5=2-x | | 1,9=0,7*1,9+0,2*1,7+0,1x | | 4x=40+x-10 | | X+40=6x+90 | | 3^x=300 | | 7x+1=60-(3x+9) | | 1/2x^=50 | | 7(x+5)-2(x+2)=5x+8 | | 7/8c=42/3 | | n^2+n-1332=0 | | 3^4(m+1)+3^4m=246 | | 3.5-2.5m=-(m-0.50) | | 2(t-1)-5(2t-1)=16-7(3t+5) | | 27x8=29x8 | | 22(6x-7)^2=242 | | 3a/8=1.5+a/2 | | 6a+8=10 | | 1/5(4-3x)=-2 | | (1-9y)÷(11-3y)=5÷8 | | 5(3x-8)-7=5(x-2)+23 | | 1/6(x+3)+1/4(3x-1)=3 | | 2(x+1)=5(x-1)-14 | | t÷0.1=-18 | | x-10=2x-5 |

Equations solver categories