1/5x-2=-0.7x

Simple and best practice solution for 1/5x-2=-0.7x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x-2=-0.7x equation:



1/5x-2=-0.7x
We move all terms to the left:
1/5x-2-(-0.7x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
1/5x+0.7x-2=0
We multiply all the terms by the denominator
(0.7x)*5x-2*5x+1=0
We add all the numbers together, and all the variables
(+0.7x)*5x-2*5x+1=0
We multiply parentheses
0x^2-2*5x+1=0
Wy multiply elements
0x^2-10x+1=0
We add all the numbers together, and all the variables
x^2-10x+1=0
a = 1; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·1·1
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{6}}{2*1}=\frac{10-4\sqrt{6}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{6}}{2*1}=\frac{10+4\sqrt{6}}{2} $

See similar equations:

| (12)/(x)=(40)/(16) | | 9+3.5g=11−0.5g | | 32=-8w+3(w-6) | | -25+x=x+30 | | 3u^2-9u+4=0 | | w−2+2w=6+5w | | 12/x=40/16 | | 2=n+7-1 | | 5z-3.2=6z | | 87=4(6m-4)+7 | | 12+a=39 | | 6x-2÷4=x-2 | | x+5/6=-5/6 | | 160=8(4x-8) | | 7/8(−32−48x)+36=2/3(−33x−18)−10x | | h/5+4=-9 | | 80=10(3e+2) | | 5x+90=16x-42 | | 8p-17=-31+p | | 5+3d=-7 | | 5x-300=180 | | -92=4(2-5a) | | Y=2x^2-16-35 | | -75=5(x-1) | | 5-(1+-4n)3=70 | | F(x)=2x^2-16-35 | | 9+2|4x-3|=19 | | -172=-4(-8b+7)-8b | | 12+6(2x+4)=6x-6 | | 6x+7=8x-27 | | -6n+7=-5n-15 | | -5(4+5a)=105 |

Equations solver categories