1/5x-4(2x+3)=12

Simple and best practice solution for 1/5x-4(2x+3)=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x-4(2x+3)=12 equation:



1/5x-4(2x+3)=12
We move all terms to the left:
1/5x-4(2x+3)-(12)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We multiply parentheses
1/5x-8x-12-12=0
We multiply all the terms by the denominator
-8x*5x-12*5x-12*5x+1=0
Wy multiply elements
-40x^2-60x-60x+1=0
We add all the numbers together, and all the variables
-40x^2-120x+1=0
a = -40; b = -120; c = +1;
Δ = b2-4ac
Δ = -1202-4·(-40)·1
Δ = 14560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14560}=\sqrt{16*910}=\sqrt{16}*\sqrt{910}=4\sqrt{910}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-4\sqrt{910}}{2*-40}=\frac{120-4\sqrt{910}}{-80} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+4\sqrt{910}}{2*-40}=\frac{120+4\sqrt{910}}{-80} $

See similar equations:

| 4x+4+3x=-10 | | x/4+3x/6+x=21 | | 13-3y=10y | | 8=3/7x | | 1/4(n-2)=1/4n-3/2 | | 11+9x=3x-20 | | 2x+(9+4)=18 | | -1(7-3x)+6(5+2x)=94 | | t^2-11t+31=0 | | 15^x=375 | | -3/x=83 | | n÷9=13= | | 10v=15+7v | | (1/3)^x=27^x-4 | | 15x-11=-36 | | 2+x2-(-2x)=x-2-(-1-x2) | | 10x+1+9x-11=80 | | t^2-11t+21=0 | | 2x-10/3x-20=7/8 | | 7-2x-7=-10 | | 4q+10=6-4q | | (5+x)(2x+3)=0 | | 55=10a-5 | | p+4=-p-2 | | Q=23-2p | | 10a-5=55 | | 2*(3-4x)=2x-(x-5) | | 4x+64x=180 | | 2n-5=-16 | | r-3-6=-10 | | 5 + 2 ( 10 )=b | | x+2/3=5x-4 |

Equations solver categories