1/5x-4/3=2/3x+1

Simple and best practice solution for 1/5x-4/3=2/3x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x-4/3=2/3x+1 equation:



1/5x-4/3=2/3x+1
We move all terms to the left:
1/5x-4/3-(2/3x+1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x+1)!=0
x∈R
We get rid of parentheses
1/5x-2/3x-1-4/3=0
We calculate fractions
27x/135x^2+(-10x)/135x^2+(-20x)/135x^2-1=0
We multiply all the terms by the denominator
27x+(-10x)+(-20x)-1*135x^2=0
Wy multiply elements
-135x^2+27x+(-10x)+(-20x)=0
We get rid of parentheses
-135x^2+27x-10x-20x=0
We add all the numbers together, and all the variables
-135x^2-3x=0
a = -135; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·(-135)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*-135}=\frac{0}{-270} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*-135}=\frac{6}{-270} =-1/45 $

See similar equations:

| 1785=x-800 | | 9+4i=21 | | 9+8a=25 | | -9+9s=63 | | 2=18+z | | x(x+1)(x+3)=(x+2)^3 | | 46=4y+5y-4-8y | | (x+0)(x-3)=0 | | 2x(x^2+4)=1 | | -x+7=7 | | 3(x+8)-9=-3x-12 | | x÷8-2=4 | | Y=1.19c+56 | | f(-3)=5(-3^2)-7(-3)+1 | | 2(x-4)=74 | | 6y=10Y= | | (p-1)(2p-3)=0 | | 25x^2-4x+16=0 | | 8x^2-49x-49=0 | | (3y+2)+3y=127 | | .5a+6.2=12 | | (x+7)(8x+-7)=0 | | 4=2^x | | -16*t^2+14t+12=0 | | 6x+4+8x-16=180 | | 2(4t-6)=21t+7 | | -15=x-81= | | 3(2x-5)=2(3x-1)+1x | | 16t^2-50t+27=0 | | 3x−2.4=9.6, | | 2(4t-6)=19t+8 | | 3+2(x+4)=4x-1 |

Equations solver categories