1/5x-40=2x-4

Simple and best practice solution for 1/5x-40=2x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x-40=2x-4 equation:



1/5x-40=2x-4
We move all terms to the left:
1/5x-40-(2x-4)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
1/5x-2x+4-40=0
We multiply all the terms by the denominator
-2x*5x+4*5x-40*5x+1=0
Wy multiply elements
-10x^2+20x-200x+1=0
We add all the numbers together, and all the variables
-10x^2-180x+1=0
a = -10; b = -180; c = +1;
Δ = b2-4ac
Δ = -1802-4·(-10)·1
Δ = 32440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32440}=\sqrt{4*8110}=\sqrt{4}*\sqrt{8110}=2\sqrt{8110}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-2\sqrt{8110}}{2*-10}=\frac{180-2\sqrt{8110}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+2\sqrt{8110}}{2*-10}=\frac{180+2\sqrt{8110}}{-20} $

See similar equations:

| (x-1)/(2-x)=0 | | 11n-(n+13)=0 | | n(11)-(n+13)=0 | | n(6+5)=n+13 | | 0=x3+-18x2+107x+-216 | | -26=3f | | 13=b/2 | | (5-x)=7(x-9) | | `11n-6n=6 | | (3x/5)+(x/7)+144=x | | x+((.20)(x))=12450 | | x+15/100=56000 | | x+15/100=5600 | | x=15/100=56000 | | 226x=22 | | 3(2x-7)=4(x+2) | | xx226=22 | | 112+96t-16t^2=112 | | 6+x=x2 | | -4y-13=31 | | 3x-2(2x+3)=0 | | 112+96t-16t^2=200 | | 3(9x+6)=-66 | | 3(9x+6=-66 | | x−0,4x=72 | | l÷3+4=l | | 2.82x+1x9.42x-1=6.34x | | (m+2)(m-1)^3=0 | | 133x=8.4 | | 72x^2-72x=0 | | 4.905x^2-5x+1=0 | | 4.905x^2-10x+1=0 |

Equations solver categories