If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/5x-4=x-20/5
We move all terms to the left:
1/5x-4-(x-20/5)=0
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
1/5x-(x-4)-4=0
We get rid of parentheses
1/5x-x+4-4=0
We multiply all the terms by the denominator
-x*5x+4*5x-4*5x+1=0
Wy multiply elements
-5x^2+20x-20x+1=0
We add all the numbers together, and all the variables
-5x^2+1=0
a = -5; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-5)·1
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-5}=\frac{0-2\sqrt{5}}{-10} =-\frac{2\sqrt{5}}{-10} =-\frac{\sqrt{5}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-5}=\frac{0+2\sqrt{5}}{-10} =\frac{2\sqrt{5}}{-10} =\frac{\sqrt{5}}{-5} $
| 9x+7=20x | | 15+24+2x=145x=392 | | 6y=30+y | | 1/4x=20+x | | 18x+2=-4+19x | | 4x+5=5x+4/4 | | -6(-6x+3)-3x=1 | | 6-3x=-3(x+4) | | 2/4-6x/10=-22/4 | | 2/3-4x/6=-12/3 | | 3x-1.5=6x+18 | | 7^5x-9=117649 | | u+5u=42 | | -1/2(-1/3x+2)=5 | | -9+9x=6+8x+4x | | 55=-2(3x+5)-7(-8x+5) | | 0+x=1 | | 188=23x+50x= | | 49^5x+2=1/7^11-x | | 11^3.8=x^2 | | 4=3v-3 | | 4(4x-2)=2 | | 320=4(60-y)+8y | | 0.1/2=0.5x | | -4(x-5)=-5(-4+4x) | | -3(x+1)=-3(-3+x) | | 4(b-2)=12(2b-1) | | 7(x−4)+6=7x−22 | | x-3+0.25=2 | | k-1234=5678 | | w^2=19 | | 68=4(-3n-4)+8(3-6n) |