1/5x2+10=240

Simple and best practice solution for 1/5x2+10=240 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x2+10=240 equation:



1/5x^2+10=240
We move all terms to the left:
1/5x^2+10-(240)=0
Domain of the equation: 5x^2!=0
x^2!=0/5
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x^2-230=0
We multiply all the terms by the denominator
-230*5x^2+1=0
Wy multiply elements
-1150x^2+1=0
a = -1150; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-1150)·1
Δ = 4600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4600}=\sqrt{100*46}=\sqrt{100}*\sqrt{46}=10\sqrt{46}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{46}}{2*-1150}=\frac{0-10\sqrt{46}}{-2300} =-\frac{10\sqrt{46}}{-2300} =-\frac{\sqrt{46}}{-230} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{46}}{2*-1150}=\frac{0+10\sqrt{46}}{-2300} =\frac{10\sqrt{46}}{-2300} =\frac{\sqrt{46}}{-230} $

See similar equations:

| 3x2+24x=0 | | .5(8.4x+6)=4.2x-3 | | 6d−​2​​11​​=2d−​2​​13 | | 3-2(3x-1)=5(4-x) | | 5y+11=2y+1 | | 3x-(5x-4)=2x+8 | | -2e=-4e+24 | | 2b-6b=4(1-8b)-4(1+6b) | | 5(1-6n)-5(n+1)=-2n-4n | | 4x-4=-15^2 | | h÷3-4=14 | | 2x+3/2=-3x+1/2 | | 0=(400+20x)(60-2x) | | 5x+34=2x+76 | | 3x+8-2x-4=10 | | 2x+3/2=3x+1/2 | | (x-6)^(3/2)=125 | | 10=(1+3b) | | 12w=10+7w | | 35t+70(8-t)=385 | | 12b=12b+2 | | 25a=-5+(-5-1)-2 | | 18/x^2=1+3/x | | 4(x-1)=1/2(8x-10) | | 3(-3+m)=-6 | | 3x+8-2×-4=10 | | 1/10x=1000 | | 2(7-x)/3=-x | | 4(x-1)=1/2(8x-10 | | 16y-8(3y-4)=48 | | 14x+38=6x-18 | | 24=6(-x-3) |

Equations solver categories