1/5y+3y=2y+42

Simple and best practice solution for 1/5y+3y=2y+42 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5y+3y=2y+42 equation:



1/5y+3y=2y+42
We move all terms to the left:
1/5y+3y-(2y+42)=0
Domain of the equation: 5y!=0
y!=0/5
y!=0
y∈R
We add all the numbers together, and all the variables
3y+1/5y-(2y+42)=0
We get rid of parentheses
3y+1/5y-2y-42=0
We multiply all the terms by the denominator
3y*5y-2y*5y-42*5y+1=0
Wy multiply elements
15y^2-10y^2-210y+1=0
We add all the numbers together, and all the variables
5y^2-210y+1=0
a = 5; b = -210; c = +1;
Δ = b2-4ac
Δ = -2102-4·5·1
Δ = 44080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44080}=\sqrt{16*2755}=\sqrt{16}*\sqrt{2755}=4\sqrt{2755}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-210)-4\sqrt{2755}}{2*5}=\frac{210-4\sqrt{2755}}{10} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-210)+4\sqrt{2755}}{2*5}=\frac{210+4\sqrt{2755}}{10} $

See similar equations:

| x/15=8⅓ | | -3x^2+12x+351=0 | | 6x^2+3x^2=40^2 | | 4(a+2)=12 | | 14.28=2*3.14*r/4+2r | | 1/2(2x+6)=3x+15 | | 24x–15=-27 | | 4x+28=11x-29 | | -155=7(-5x+2)=6 | | 6/7-11x=-6 | | V+31=3v+23 | | 11u+26=6u+31 | | 16800-100x=5x | | 11.75(13)+16y=265 | | 16800-11x=5x | | 2t+29=t+33 | | 8b+5+6b=16 | | -18=2(6m+3)=4(m-2) | | 3x-5=2(x=1) | | 4(a−44)=64 | | 6p=2p+76 | | 180=2x+103-x+(180-(6x+7)) | | 7c=4c+33 | | -155=7(-5x=2)+6 | | 5v+1=6v-17 | | -5+k/5=-3 | | 4c=c+54 | | -10x=340 | | 2w=w+48 | | (3/2)b+5=20−b | | 4v=v+78 | | 7(2r+1)=-91 |

Equations solver categories