1/5z+3=-z+21

Simple and best practice solution for 1/5z+3=-z+21 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5z+3=-z+21 equation:



1/5z+3=-z+21
We move all terms to the left:
1/5z+3-(-z+21)=0
Domain of the equation: 5z!=0
z!=0/5
z!=0
z∈R
We add all the numbers together, and all the variables
1/5z-(-1z+21)+3=0
We get rid of parentheses
1/5z+1z-21+3=0
We multiply all the terms by the denominator
1z*5z-21*5z+3*5z+1=0
Wy multiply elements
5z^2-105z+15z+1=0
We add all the numbers together, and all the variables
5z^2-90z+1=0
a = 5; b = -90; c = +1;
Δ = b2-4ac
Δ = -902-4·5·1
Δ = 8080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8080}=\sqrt{16*505}=\sqrt{16}*\sqrt{505}=4\sqrt{505}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-4\sqrt{505}}{2*5}=\frac{90-4\sqrt{505}}{10} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+4\sqrt{505}}{2*5}=\frac{90+4\sqrt{505}}{10} $

See similar equations:

| 50+4x+12+2x+10=180 | | -4r+1=-15 | | 1/5n+2=-70 | | -46=-6-5c | | 4/3d-1=-9 | | 50+2x+10+4x+12=180 | | 4/3d-1=0 | | -1/8x-2=0 | | r-40=-20 | | 5(x-3=-4x+30 | | 4x+40=-8(x+7) | | 5(x-1)=-7x+43 | | x=75-0.3x | | -4c+3=23 | | 7v+8(v+2)=-29 | | 7(w-2)-3w=-30 | | 9=-6x+3(x+7) | | 535=65+5n | | 535=5n+65 | | 65+5n=535 | | 5n+65=535 | | 65-5n=535 | | (N-4)(N-5)=n-1 | | 5*n-65=535 | | 65-5*n=535 | | 535=65-5n | | 8k-5=-45 | | 535=5n-65 | | 3-x+3=13 | | y+24-3y=20 | | .05x=500 | | 3.5x+4=21 |

Equations solver categories