If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/6(18y+12)-9=-1/2(2y-18)
We move all terms to the left:
1/6(18y+12)-9-(-1/2(2y-18))=0
Domain of the equation: 6(18y+12)!=0
y∈R
Domain of the equation: 2(2y-18))!=0We calculate fractions
y∈R
(2y2/(6(18y+12)*2(2y-18)))+(-(-6y1)/(6(18y+12)*2(2y-18)))-9=0
We calculate terms in parentheses: +(2y2/(6(18y+12)*2(2y-18))), so:
2y2/(6(18y+12)*2(2y-18))
We multiply all the terms by the denominator
2y2
We add all the numbers together, and all the variables
2y^2
Back to the equation:
+(2y^2)
We calculate terms in parentheses: +(-(-6y1)/(6(18y+12)*2(2y-18))), so:a = 2; b = 6; c = -9;
-(-6y1)/(6(18y+12)*2(2y-18))
We add all the numbers together, and all the variables
-(-6y)/(6(18y+12)*2(2y-18))
We multiply all the terms by the denominator
-(-6y)
We get rid of parentheses
6y
Back to the equation:
+(6y)
Δ = b2-4ac
Δ = 62-4·2·(-9)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{3}}{2*2}=\frac{-6-6\sqrt{3}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{3}}{2*2}=\frac{-6+6\sqrt{3}}{4} $
| 0.04(y-1.5)=0.04y+ | | |4a+6|-4a=-10 | | 1=-1/4n+1 | | 0.18a+3-0.7a=0.33a-0.4 | | 3x(3x+8)=-7 | | -3(4x+3)+4(6x+1=43 | | 2/4=x/2 | | (x-2)(3x-7)=24 | | 7(-8-6b)=5b+38 | | x-8000=328432 | | 48+.99x=0+1.29x | | x/8=7/6 | | -7.9z+1.4=6.5 | | X^3+3x2-2x-16=0 | | 1/2(2x-6)+5=2/3x+9+7/3x | | X3+3x2-2x-16=0 | | 3(x-5)=2(x-6)+2 | | 12(2x-(5+6))=3x+(6x7) | | x-5=3+1 | | -4x-16x=16 | | (2n)^2-38n+180=0 | | 4x/28=71/7 | | 12x^2+5x-36=0 | | (3x+5)(4x+1)=-5 | | 6r^2-11r=-4 | | 2w+2(w+41/4)=1281/2 | | 4/5y-1/2y=6 | | 3/2x+2=1/2+1/2x | | 9x-(2x+6)=8x-16 | | 2(3x+7)=(9x-10) | | (4x-3)^2=36 | | 10+7x=14x+-7+3 |