If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/6912z+18)=2z+-3
We move all terms to the left:
1/6912z+18)-(2z+-3)=0
Domain of the equation: 6912z!=0We add all the numbers together, and all the variables
z!=0/6912
z!=0
z∈R
1/6912z+18)-(2z-3)=0
We add all the numbers together, and all the variables
1/6912z+18)-(2z=0
We multiply all the terms by the denominator
-2z*6912z+1+18=0
We add all the numbers together, and all the variables
-2z*6912z+19=0
Wy multiply elements
-13824z^2+19=0
a = -13824; b = 0; c = +19;
Δ = b2-4ac
Δ = 02-4·(-13824)·19
Δ = 1050624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1050624}=\sqrt{9216*114}=\sqrt{9216}*\sqrt{114}=96\sqrt{114}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96\sqrt{114}}{2*-13824}=\frac{0-96\sqrt{114}}{-27648} =-\frac{96\sqrt{114}}{-27648} =-\frac{\sqrt{114}}{-288} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96\sqrt{114}}{2*-13824}=\frac{0+96\sqrt{114}}{-27648} =\frac{96\sqrt{114}}{-27648} =\frac{\sqrt{114}}{-288} $
| -3x+15-4x-2=-8 | | 1/3r+1/4=5/12 | | x-155°+5°=180 | | 3/k=-20/35 | | 5x-x=4x+2 | | |3n-2|=1/2 | | -4x+7=71 | | n/10-3/10=1/5 | | 4/8=b/15 | | 3x-19=2x | | 6(m-1)=3(3m+5 | | n/5-3/10=1/5 | | 64=8t-8 | | 5(2y-9)-7y+36=-724 | | 1/5(15b+-7=3b+-9 | | -0.10(68)+0.85x=0.05(x-8) | | -7(2z+4)=24 | | 7/9x=38 | | -2(x+3)=-3(7x-4)+7x | | 4.6x^2+11x=26 | | 0.10x+33=53 | | -1/5x=28 | | y-1000=386 | | X^2+3x+147=0 | | 3.5x+0.5x=1.5+2.5x | | 2x+x+1=2x+1+x | | 5x+2(33x-1)=-46 | | 1/2(6x+4)=5 | | 1/3a+7/10=11/4 | | X-6(x-5)=2x+4(x-20 | | x/3+108=180 | | 5x+×=25 |