1/6n-3n-12=2n+13

Simple and best practice solution for 1/6n-3n-12=2n+13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6n-3n-12=2n+13 equation:



1/6n-3n-12=2n+13
We move all terms to the left:
1/6n-3n-12-(2n+13)=0
Domain of the equation: 6n!=0
n!=0/6
n!=0
n∈R
We add all the numbers together, and all the variables
-3n+1/6n-(2n+13)-12=0
We get rid of parentheses
-3n+1/6n-2n-13-12=0
We multiply all the terms by the denominator
-3n*6n-2n*6n-13*6n-12*6n+1=0
Wy multiply elements
-18n^2-12n^2-78n-72n+1=0
We add all the numbers together, and all the variables
-30n^2-150n+1=0
a = -30; b = -150; c = +1;
Δ = b2-4ac
Δ = -1502-4·(-30)·1
Δ = 22620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{22620}=\sqrt{4*5655}=\sqrt{4}*\sqrt{5655}=2\sqrt{5655}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{5655}}{2*-30}=\frac{150-2\sqrt{5655}}{-60} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{5655}}{2*-30}=\frac{150+2\sqrt{5655}}{-60} $

See similar equations:

| (-1/2x)+4=-2x+5 | | r/3+5=15 | | 6c=c+20 | | 8^x-3=36 | | 65+40x+325=x | | 2y(6)=54 | | 12n-n=528 | | 3.8=0.5(8n-4 | | 4z-10=z=8 | | 3x+4=(-2x+5) | | 12x-3÷x=2 | | g/9+15=19 | | k/3–9=12 | | 13u=21+6u | | 5/6-1/4=x/24-x/24 | | 0=(X^2-3x=5x-15)(x+1) | | 5x=5^3x−2 | | 7x+1-5x=37 | | x2-9x-15=-5 | | 18x=5x-2=3x | | -2+2r=4r+10 | | 22+8h=86 | | 8^x=73 | | –f=9f−10 | | 54•6=m | | 184.8=13.2t | | 2x(x-7)=2x-14 | | x-10=-3x+-4 | | 8x2–2x–18=-15 | | 4(3x+7)+6x+9= | | -20q+13q-12q=19 | | x2+8x+45=-6x |

Equations solver categories