1/6x+10=1/4x

Simple and best practice solution for 1/6x+10=1/4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6x+10=1/4x equation:



1/6x+10=1/4x
We move all terms to the left:
1/6x+10-(1/4x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/6x-(+1/4x)+10=0
We get rid of parentheses
1/6x-1/4x+10=0
We calculate fractions
4x/24x^2+(-6x)/24x^2+10=0
We multiply all the terms by the denominator
4x+(-6x)+10*24x^2=0
Wy multiply elements
240x^2+4x+(-6x)=0
We get rid of parentheses
240x^2+4x-6x=0
We add all the numbers together, and all the variables
240x^2-2x=0
a = 240; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·240·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*240}=\frac{0}{480} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*240}=\frac{4}{480} =1/120 $

See similar equations:

| 8n+13=9n | | 12/x+12/2x=0 | | 6(x+4)+x=4(x+3)+2 | | -9x+18=3x+141 | | 63b-56=7(9b-8) | | 10/x=0.6 | | 17x=17.92 | | 10*x=0.6 | | 0.5x-0.9(5-x)=3.2 | | 4x=1/2*(18x-15)-(8x+1) | | 6-2k=3k-9 | | (3x-4)-(2x+11)=180 | | 5(x+1)+2x+3=4+3x | | 19-(3m+4)=4+2m-14 | | (3x-4)=(2x+11)=180 | | R(c)=c+2/c+4 | | 8+6x-1-4x=4x+2+2x+3-5x | | 3-5x+2=6-2x+8-12x | | 7-4x+2=3x+2 | | 4x=1/2(18x-15)-(8x+1) | | 7(x+9)+x=2(x+3)-2 | | 2x+23+3x-4=58-3x+33 | | -2(x+5)+3=8(x+3)+8 | | 10x30=12x-4 | | 0.5x-0.9(6-x)=0.9 | | 20/30=z | | 4x-6(2-x)=13 | | 55÷c=11 | | 8y+15=4y-15+3y+59 | | 175=2x+10+3x+15 | | x+34/9=3 | | x=175+2x+10+3x+15 |

Equations solver categories