1/6x+10=3/4x-4

Simple and best practice solution for 1/6x+10=3/4x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6x+10=3/4x-4 equation:



1/6x+10=3/4x-4
We move all terms to the left:
1/6x+10-(3/4x-4)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 4x-4)!=0
x∈R
We get rid of parentheses
1/6x-3/4x+4+10=0
We calculate fractions
4x/24x^2+(-18x)/24x^2+4+10=0
We add all the numbers together, and all the variables
4x/24x^2+(-18x)/24x^2+14=0
We multiply all the terms by the denominator
4x+(-18x)+14*24x^2=0
Wy multiply elements
336x^2+4x+(-18x)=0
We get rid of parentheses
336x^2+4x-18x=0
We add all the numbers together, and all the variables
336x^2-14x=0
a = 336; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·336·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*336}=\frac{0}{672} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*336}=\frac{28}{672} =1/24 $

See similar equations:

| 2x^2-52x+50=0 | | 3*9x=108 | | 3.5t+1.43=5.3t-1.63 | | 4(2x-2)=6(x-2) | | 87-u=164 | | x/7+7.4=-10.1 | | 8^x=1/28 | | 2^x=5 | | 64-y=211 | | 1/2(-16s-20)=8s-10 | | -d+6=18+4d-5 | | -11=3+2y | | (2x-5)(2x+4)=0 | | -2v-8=2 | | 2x-2=x+70 | | -1/3=-1/2y-9/7 | | 8n-6=-9n+17 | | -2=-4x+2(x+8) | | -2f=-8−f | | -21=-3+3x | | 2x+4(-4)=16 | | 5^9x-1=25 | | 10y+4X=120 | | 12x−-13x−8x−6x−20x=-18 | | 3^9x-1=9 | | -3x^2+30x-4=0 | | 1n+2=6-6n | | x2^-25=0 | | -2(u+2)=3u-6+2(5u+6) | | 2x+4-2=16 | | 14=2u-10 | | x4-81=0 |

Equations solver categories