1/6x-5/6=1/2x+3

Simple and best practice solution for 1/6x-5/6=1/2x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6x-5/6=1/2x+3 equation:



1/6x-5/6=1/2x+3
We move all terms to the left:
1/6x-5/6-(1/2x+3)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 2x+3)!=0
x∈R
We get rid of parentheses
1/6x-1/2x-3-5/6=0
We calculate fractions
2x/432x^2+(-216x)/432x^2+(-10x)/432x^2-3=0
We multiply all the terms by the denominator
2x+(-216x)+(-10x)-3*432x^2=0
Wy multiply elements
-1296x^2+2x+(-216x)+(-10x)=0
We get rid of parentheses
-1296x^2+2x-216x-10x=0
We add all the numbers together, and all the variables
-1296x^2-224x=0
a = -1296; b = -224; c = 0;
Δ = b2-4ac
Δ = -2242-4·(-1296)·0
Δ = 50176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{50176}=224$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-224)-224}{2*-1296}=\frac{0}{-2592} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-224)+224}{2*-1296}=\frac{448}{-2592} =-14/81 $

See similar equations:

| 20=-y/6 | | (2x-23)=(x+20)=90 | | 3^2x=2^x+7 | | 243^2x+4=81^x+2 | | k-11.2=36.7$ | | x^2+6x+18=35 | | $k-11.2=36.7$ | | -8=-1x+5-1 | | -6x-2(5x-9)=-62 | | 2x+1=2/5(3x+3) | | 2π/x=24 | | 5((x+1)=x-31 | | 30=-6v+8(v+5) | | 8-3×2=p | | 30=-6v+6v+8(v+5) | | 2y-8=15y+57 | | 24x+15x-15=180 | | 2x+14=8x+20 | | a=2b=8,then3a+6(b+2)= | | 7x/4x^2=7/8 | | 24x-15=15x | | 3.27=9/x | | |x-12|-3=11 | | 7(2c+-5)=7 | | 12x+2-8x=​20x-30 | | 3.27=x/9 | | 7x+3-6x=-4 | | -7+11g=-5g | | 4+7x2–8= | | 2/3+x/4=6/5 | | 4p-3=p | | W^2+2w-180=0 |

Equations solver categories