If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/6y-1/3=10/12y+1
We move all terms to the left:
1/6y-1/3-(10/12y+1)=0
Domain of the equation: 6y!=0
y!=0/6
y!=0
y∈R
Domain of the equation: 12y+1)!=0We get rid of parentheses
y∈R
1/6y-10/12y-1-1/3=0
We calculate fractions
(-72y^2)/648y^2+108y/648y^2+(-540y)/648y^2-1=0
We multiply all the terms by the denominator
(-72y^2)+108y+(-540y)-1*648y^2=0
Wy multiply elements
(-72y^2)-648y^2+108y+(-540y)=0
We get rid of parentheses
-72y^2-648y^2+108y-540y=0
We add all the numbers together, and all the variables
-720y^2-432y=0
a = -720; b = -432; c = 0;
Δ = b2-4ac
Δ = -4322-4·(-720)·0
Δ = 186624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{186624}=432$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-432)-432}{2*-720}=\frac{0}{-1440} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-432)+432}{2*-720}=\frac{864}{-1440} =-3/5 $
| 20/2(5+5)=x | | (16)^7t=10 | | Y=-9x^2-19x-6 | | 3+3a=4-8a | | 5x=4=8x-8 | | 10x-1=11x+3 | | Y=-2x^2-9x-5 | | Y=-8x^2+20x-9 | | 15–p=1/3p–1 | | X/2+x=14-2x | | Z=-1/3z-(-7) | | 5y(2y-3)=0 | | -2=2+2u | | 10=3/5y | | 5/8=2/x-5 | | 4(0)-2y=2 | | 2=x-7/8x | | 9/6=n/2 | | 9(w+7)=3w+15 | | -8v+44=-5(v-7) | | -8(w-7)=2w-44 | | 91=12x+10(4x) | | n/(n-20=5/(n+2)-(n-1)/(2-n) | | 350−x=200+x | | 0=-6x2-19x-15 | | 1/3x-3/10x-9=0 | | 6x2=-19x-15 | | (n+2)(2-n)n=(n-2)(2-n)5-(n-2)(n+2)(n-1) | | -32-24n=-2 | | 30+8t+100=70+10t | | 41w2–13w=0 | | 3n2+2n=0 |