1/763n-77=-11+9n

Simple and best practice solution for 1/763n-77=-11+9n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/763n-77=-11+9n equation:



1/763n-77=-11+9n
We move all terms to the left:
1/763n-77-(-11+9n)=0
Domain of the equation: 763n!=0
n!=0/763
n!=0
n∈R
We add all the numbers together, and all the variables
1/763n-(9n-11)-77=0
We get rid of parentheses
1/763n-9n+11-77=0
We multiply all the terms by the denominator
-9n*763n+11*763n-77*763n+1=0
Wy multiply elements
-6867n^2+8393n-58751n+1=0
We add all the numbers together, and all the variables
-6867n^2-50358n+1=0
a = -6867; b = -50358; c = +1;
Δ = b2-4ac
Δ = -503582-4·(-6867)·1
Δ = 2535955632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2535955632}=\sqrt{144*17610803}=\sqrt{144}*\sqrt{17610803}=12\sqrt{17610803}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50358)-12\sqrt{17610803}}{2*-6867}=\frac{50358-12\sqrt{17610803}}{-13734} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50358)+12\sqrt{17610803}}{2*-6867}=\frac{50358+12\sqrt{17610803}}{-13734} $

See similar equations:

| 18m=12m | | -7u/5=-21 | | 3+8p=-13 | | 3-2-w=60 | | h}6-1=-36h​ −1=−3 | | 22=x/2-9 | | d/3=(-81) | | -8-x-11=-9 | | 4x-36+x+31=180 | | w/4-10=19 | | 3=8(9+5n) | | 2z+2=5z-4z | | 9x+5x=-11(x+1)+11(1-6x) | | x+2+0=-9 | | 3w-12=1/624-6w | | 2(1+6x)+2(3-6x)=7x-5 | | y-5.8=8.6 | | 3=72+40n | | 4x+83=14x+13 | | u/5+17=20 | | u-8.6=4.36 | | 39+8n=-5(-3n+2) | | 2(w-1)+8=(2w-4) | | 3.1+5x=6.3 | | (2/5)*b+1=-11 | | (3x+13)-(2x+2)=2x+2 | | 2/5)*b+1=-11 | | 14a+46=-11a-42+5a | | 1/3q^2=-1/3q^2+10 | | -(m-2)+5=-(3+m) | | 65=2x+23 | | -30-6m=-6m-6(5+4m) |

Equations solver categories