1/7a+3/4=9/8;a=

Simple and best practice solution for 1/7a+3/4=9/8;a= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/7a+3/4=9/8;a= equation:



1/7a+3/4=9/8a=
We move all terms to the left:
1/7a+3/4-(9/8a)=0
Domain of the equation: 7a!=0
a!=0/7
a!=0
a∈R
Domain of the equation: 8a)!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
1/7a-(+9/8a)+3/4=0
We get rid of parentheses
1/7a-9/8a+3/4=0
We calculate fractions
1344a^2/896a^2+128a/896a^2+(-1008a)/896a^2=0
We multiply all the terms by the denominator
1344a^2+128a+(-1008a)=0
We get rid of parentheses
1344a^2+128a-1008a=0
We add all the numbers together, and all the variables
1344a^2-880a=0
a = 1344; b = -880; c = 0;
Δ = b2-4ac
Δ = -8802-4·1344·0
Δ = 774400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{774400}=880$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-880)-880}{2*1344}=\frac{0}{2688} =0 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-880)+880}{2*1344}=\frac{1760}{2688} =55/84 $

See similar equations:

| –4r+–12=–88 | | 111+v+33=180 | | 34=n/4-31 | | 2y+8=-4+10 | | 75+85d=30+100d | | 8+x+2=14 | | -40=4x=20=x | | 2.4m=30 | | P/22.5=7/x | | 32=w+20 | | x+64=x+54 | | p+35/6=8 | | 2x-13+x+22=180 | | 7m^2-55m-8=0 | | 90=9x+36 | | x+64+x+54=180 | | 16+3x+38=180 | | X=(5x)+(4x-20) | | 5/10d=5 | | 0.4x-0.9=3.9 | | c-55/7=6 | | (x*x)-40=(1/6) | | 4(x+2)=5(x-39.4) | | 10r=70 | | 4x-5x=2x-20 | | 3x-18=x+9 | | 5+3x+4=27 | | c+38+27=180 | | X=5x+4x-20 | | 2/10d=2 | | 6(1+3m)=-9(-2m-1)-3 | | f-28/9=5 |

Equations solver categories