If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/7k+4/3=-9-6/5k
We move all terms to the left:
1/7k+4/3-(-9-6/5k)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 5k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
1/7k-(-6/5k-9)+4/3=0
We get rid of parentheses
1/7k+6/5k+9+4/3=0
We calculate fractions
700k^2/315k^2+45k/315k^2+378k/315k^2+9=0
We multiply all the terms by the denominator
700k^2+45k+378k+9*315k^2=0
We add all the numbers together, and all the variables
700k^2+423k+9*315k^2=0
Wy multiply elements
700k^2+2835k^2+423k=0
We add all the numbers together, and all the variables
3535k^2+423k=0
a = 3535; b = 423; c = 0;
Δ = b2-4ac
Δ = 4232-4·3535·0
Δ = 178929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{178929}=423$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(423)-423}{2*3535}=\frac{-846}{7070} =-423/3535 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(423)+423}{2*3535}=\frac{0}{7070} =0 $
| 100+0.50x=70+0.80x | | 120=x60 | | 16(x-3)=2(8x-24) | | -1+v/7=2 | | 10-6x=-8+3x | | 16x=15=8(2x-7) | | |3x=14|=10 | | 7b-8+2b=2+9b-10 | | 3x=8/7=x-4 | | x=43/392 | | 5(2c-1)-6=8c+5 | | 19=13x-7 | | 14-9x=6x-46 | | 4x-7(-3+1/2)=24 | | --(v-8)-8(2v-8)=-13 | | u-11=-5 | | 1/3y+6=1/6y | | x−(4−x)=3(x−4)−4 | | 5c2–2cc=9 | | w-15=-11 | | -15+27=-3(x+5) | | 3(6+1.75y)-7y=32 | | 10x-(3x-4)=4(x-1)+9 | | 0.99n+48=1.29n+48 | | x-24+x+89=180 | | 7(7b+7)=-196 | | -7(x+9)-8=-71 | | x+x*0.08=400000 | | 3x+6x-8x+2= | | 4+11=-3(2x-5) | | 83+6x-7=5x+2 | | (6x+5)=(8x-1) |