1/7n+7=n+14/2

Simple and best practice solution for 1/7n+7=n+14/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/7n+7=n+14/2 equation:



1/7n+7=n+14/2
We move all terms to the left:
1/7n+7-(n+14/2)=0
Domain of the equation: 7n!=0
n!=0/7
n!=0
n∈R
We add all the numbers together, and all the variables
1/7n-(n+7)+7=0
We get rid of parentheses
1/7n-n-7+7=0
We multiply all the terms by the denominator
-n*7n-7*7n+7*7n+1=0
Wy multiply elements
-7n^2-49n+49n+1=0
We add all the numbers together, and all the variables
-7n^2+1=0
a = -7; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-7)·1
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7}}{2*-7}=\frac{0-2\sqrt{7}}{-14} =-\frac{2\sqrt{7}}{-14} =-\frac{\sqrt{7}}{-7} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7}}{2*-7}=\frac{0+2\sqrt{7}}{-14} =\frac{2\sqrt{7}}{-14} =\frac{\sqrt{7}}{-7} $

See similar equations:

| 0.6=0.2a= | | 0.6=0.24a= | | 80x=14 | | 331+x|5=82 | | -2m-10=4m+8 | | 331+x*5=82 | | 6.4=-t/6.5 | | 2.5+3y=24 | | -10+10r+8=10+6r | | 4-0.1x=32-x | | 6x-17+4x-8=180 | | 10+3n=-10+5n | | a+7a=7 | | 15/v-2=5/2 | | 5t-6=4t | | 1.30x-(x-2.30)(3.10x-5.40)-2.88=4.60-(3.10-1.20)(x-5.30)-4.30x | | 4-n-2=18 | | 2+15s=33 | | y+1=1+4y | | 3x+9=9-3x | | (2x+6x+12)1/2=5x | | 5f=-8-3f | | 6+6v=4v | | -4x-5=-8x-6 | | 12f=13f-16 | | 7x+6(2-x)+22=31+3(6+x) | | 11x=10x+2 | | 12+3n=84 | | -c=-2c+6 | | -(-8m-6)=2(3+4m) | | 5(3x+3=3(5x+1) | | 2c/3+c/2=1/3 |

Equations solver categories