1/7x+8=1/3x

Simple and best practice solution for 1/7x+8=1/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/7x+8=1/3x equation:



1/7x+8=1/3x
We move all terms to the left:
1/7x+8-(1/3x)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/7x-(+1/3x)+8=0
We get rid of parentheses
1/7x-1/3x+8=0
We calculate fractions
3x/21x^2+(-7x)/21x^2+8=0
We multiply all the terms by the denominator
3x+(-7x)+8*21x^2=0
Wy multiply elements
168x^2+3x+(-7x)=0
We get rid of parentheses
168x^2+3x-7x=0
We add all the numbers together, and all the variables
168x^2-4x=0
a = 168; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·168·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*168}=\frac{0}{336} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*168}=\frac{8}{336} =1/42 $

See similar equations:

| 5m+3=10;2 | | 3(2x+40=60 | | 3(5x+7)^2−18=48 | | 10x+7=300 | | -3x+42x=6 | | 15-3=11x+8 | | 2+6(1-2m)=104 | | 1/6(6y+12)-8=-1/5(15y-30) | | 0.3m+0.7(m+0.7)=-3.32 | | y=(-7.75-1)(-7.75+3) | | (x+6)^5/7=32 | | 10x+9=300 | | 4^x-(3.2)^(x+1)+8=0 | | 124+2x+19=180 | | 4^x-〖3.2〗^(x+1)+8=0 | | 5x+3+7x-9=0 | | Y-8700=270(x-30) | | 10x-100=30 | | 32-5a=52 | | x+2x+19=180 | | 5x+3=−32 | | 10x-6+3x-4=9x-2+3x | | -f=-2f-6 | | 10r-8=7r+10 | | −4(−2x−2)+x-2=-48 | | 2u+3=10+3u | | 2x-18=-18 | | -11(x+1)+4(4x-6)=4(x-6)+8 | | 2(4x+2)=-2x-3 | | 4m-7=-7-7m-m | | (n-5)(n+6)=0 | | 6(x+7)=5x-5 |

Equations solver categories