1/7x-16=1/6x+18

Simple and best practice solution for 1/7x-16=1/6x+18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/7x-16=1/6x+18 equation:



1/7x-16=1/6x+18
We move all terms to the left:
1/7x-16-(1/6x+18)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 6x+18)!=0
x∈R
We get rid of parentheses
1/7x-1/6x-18-16=0
We calculate fractions
6x/42x^2+(-7x)/42x^2-18-16=0
We add all the numbers together, and all the variables
6x/42x^2+(-7x)/42x^2-34=0
We multiply all the terms by the denominator
6x+(-7x)-34*42x^2=0
Wy multiply elements
-1428x^2+6x+(-7x)=0
We get rid of parentheses
-1428x^2+6x-7x=0
We add all the numbers together, and all the variables
-1428x^2-1x=0
a = -1428; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·(-1428)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*-1428}=\frac{0}{-2856} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*-1428}=\frac{2}{-2856} =-1/1428 $

See similar equations:

| 1/2(x+1)=1/6(x+4)-7/12(x+1) | | 9x^2+18x+5=-3 | | 5x+29=-3x | | 5(x+4)-9=0 | | 3x/4+5=8 | | 12((2w-3)=6w | | -(4y/9)=-8 | | -.5z=4 | | 7/10x+6=41 | | 2y=1.10-1 | | 4n-5438982986=10903- | | 5c-2(4c-9)=5+6(2-c) | | 2b-14=44 | | 4w-6/6=2 | | 2-x=3+x | | 3x-2x+4=5x-4x-9 | | 2d+5=23 | | 1-4x=7-2x | | 2(5x-4)=-38 | | k/4-4=2.2 | | 12-(39+3x)=0 | | 1x+1=-1 | | 2(5x-4)=-8x+10x | | 3x^2+8x–3=0 | | 1+4x=21-1x | | x+2=x+0 | | (2x-7)-(x+135)=0 | | 60=w^2+7w | | -3=-2z | | -10-13=a | | -3e^2+7e+6=0 | | 2(2h-4)=3(h+1)-5 |

Equations solver categories