1/7x-33/14=5/2x

Simple and best practice solution for 1/7x-33/14=5/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/7x-33/14=5/2x equation:



1/7x-33/14=5/2x
We move all terms to the left:
1/7x-33/14-(5/2x)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/7x-(+5/2x)-33/14=0
We get rid of parentheses
1/7x-5/2x-33/14=0
We calculate fractions
(-924x^2)/196x^2+28x/196x^2+(-490x)/196x^2=0
We multiply all the terms by the denominator
(-924x^2)+28x+(-490x)=0
We get rid of parentheses
-924x^2+28x-490x=0
We add all the numbers together, and all the variables
-924x^2-462x=0
a = -924; b = -462; c = 0;
Δ = b2-4ac
Δ = -4622-4·(-924)·0
Δ = 213444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{213444}=462$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-462)-462}{2*-924}=\frac{0}{-1848} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-462)+462}{2*-924}=\frac{924}{-1848} =-1/2 $

See similar equations:

| -2(5n+8)=-6n-2(-4+n) | | (x/3)+(x+15)/6=15 | | 3b-5=35+27b-14b | | 9x+2=3x+1 | | 15t^2=0 | | 9-8t=-8t | | 9x+1=3x+8 | | 5=5x-8 | | 4(1+5a)=4(2a+3a+1) | | 9x+1=2.5x+1 | | -62+n=144 | | x+3=111 | | 9x+1=5x+4 | | 6.−4x+7=15;−2 | | 3-7u=7-7u | | 10−2(3−5m)=6(m−2) | | 7+2x=4x–3 | | 5=5m-12+2m | | 0.25÷x=-0.25 | | 32-2b=4-2(1-2b) | | 36=4a^2 | | 32-2b=4-2(1-2b | | n-8+2n=16 | | 9+2x=-10-3x | | 1.2x=2.28 | | 5y−3=2y | | 3m+22=9m-2 | | 16+2x=13+x | | 1/5(2x−10)+4x=−3(15x+4) | | (3÷4)x-5=3-(5÷4)x | | 19a-3(a-)=66 | | −2/3y−3/4=5 |

Equations solver categories