1/7y-8=-5y+28

Simple and best practice solution for 1/7y-8=-5y+28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/7y-8=-5y+28 equation:



1/7y-8=-5y+28
We move all terms to the left:
1/7y-8-(-5y+28)=0
Domain of the equation: 7y!=0
y!=0/7
y!=0
y∈R
We get rid of parentheses
1/7y+5y-28-8=0
We multiply all the terms by the denominator
5y*7y-28*7y-8*7y+1=0
Wy multiply elements
35y^2-196y-56y+1=0
We add all the numbers together, and all the variables
35y^2-252y+1=0
a = 35; b = -252; c = +1;
Δ = b2-4ac
Δ = -2522-4·35·1
Δ = 63364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{63364}=\sqrt{4*15841}=\sqrt{4}*\sqrt{15841}=2\sqrt{15841}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-252)-2\sqrt{15841}}{2*35}=\frac{252-2\sqrt{15841}}{70} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-252)+2\sqrt{15841}}{2*35}=\frac{252+2\sqrt{15841}}{70} $

See similar equations:

| 12w+8=-3w-4(w+13) | | 12y+41=125 | | 2-4/5z=1/5z+6 | | 4v-19=-5v-17+9v | | 3x-6x+2=8x+20-5 | | 2x=12-36 | | 24+2x+2=6x+18 | | x-5-(2-x)=7 | | 5r+6=11r+9 | | 8x+2=-3+5x+17 | | j-69/2=8 | | j−69/2=8 | | (2x+1)(x)=136 | | 4+6k=-3+5k | | |x+13|=|x+2| | | 30+2.5x(2)=200 | | 1=0.1x-0.5x-3 | | -9x+7=-9x | | 6x^2-6x=36 | | 10=1+3m | | 2m-13=-8m+40 | | 15+2.50x=200 | | 8/x^2=2/x−1 | | 10p-30=-4p+12 | | -105=3+6n | | 2w-12=-4 | | 15+2.50x=100 | | 8x2=2x−1 | | 2w−12=-4 | | ​3(2+5x)= | | -18x-4=-4+4x | | -18-1+23x+17=180 |

Equations solver categories