If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/8x+1/9x+1/8=43/72
We move all terms to the left:
1/8x+1/9x+1/8-(43/72)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 9x!=0We add all the numbers together, and all the variables
x!=0/9
x!=0
x∈R
1/8x+1/9x+1/8-(+43/72)=0
We get rid of parentheses
1/8x+1/9x+1/8-43/72=0
We calculate fractions
(-222912x^2)/331776x^2+4536x/331776x^2+36864x/331776x^2+4536x/331776x^2=0
We multiply all the terms by the denominator
(-222912x^2)+4536x+36864x+4536x=0
We add all the numbers together, and all the variables
(-222912x^2)+45936x=0
We get rid of parentheses
-222912x^2+45936x=0
a = -222912; b = 45936; c = 0;
Δ = b2-4ac
Δ = 459362-4·(-222912)·0
Δ = 2110116096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2110116096}=45936$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45936)-45936}{2*-222912}=\frac{-91872}{-445824} =319/1548 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45936)+45936}{2*-222912}=\frac{0}{-445824} =0 $
| 9k+4=2k+12 | | 0=4.9t^2+30t | | 1.2(x-1.5)+0.5x=1.2(x-0.8)+3.51 | | 9(k-2)=3(4+k) | | 2x+5=x+7+x | | (90-x)=4x | | V=n/4(C+L) | | 3x=-4(6-4x)+3/3 | | 5.2+1.4n=1.70 | | 3/4=c-1/2 | | 3(6x−5)+20=18(x+1) | | -40(-14)=x/5 | | T=6n-8 | | -20+8p=7(5p+1) | | 3k=27k= | | 25-6=18+x | | 4(x-1)+6-3-2(x+1)=11 | | 0.2(x-0.2)+0.5x=0.8(x+1.3)-1.31 | | 6z-15=-45 | | -9x-18=171 | | -9x-18=-17 | | 26-11=5(x-6) | | 1−6x=5x+16 | | 1.3x+2.5=1.5x+2.3 | | 2=-9n | | 2y-17=23 | | x/4.5=2.8=7.9 | | 10p^2+22p-100=0 | | 41/2f=-30 | | N²-3n-84=0 | | 75=-24t+-9 | | 1/3x=1/4+1/2 |