If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/8x+1/9x+1/8=47/36
We move all terms to the left:
1/8x+1/9x+1/8-(47/36)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 9x!=0We add all the numbers together, and all the variables
x!=0/9
x!=0
x∈R
1/8x+1/9x+1/8-(+47/36)=0
We get rid of parentheses
1/8x+1/9x+1/8-47/36=0
We calculate fractions
(-243648x^2)/165888x^2+972x/165888x^2+18432x/165888x^2+972x/165888x^2=0
We multiply all the terms by the denominator
(-243648x^2)+972x+18432x+972x=0
We add all the numbers together, and all the variables
(-243648x^2)+20376x=0
We get rid of parentheses
-243648x^2+20376x=0
a = -243648; b = 20376; c = 0;
Δ = b2-4ac
Δ = 203762-4·(-243648)·0
Δ = 415181376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{415181376}=20376$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20376)-20376}{2*-243648}=\frac{-40752}{-487296} =283/3384 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20376)+20376}{2*-243648}=\frac{0}{-487296} =0 $
| 2m-m-1=14 | | 9+2z=-2z+9 | | 6h+-19h+-3=-16 | | 2^2x=2^2x(5) | | -3+8u=7u-9 | | -s-10=3s+10 | | 3f+10=-7f | | 7-6b=-5 | | 9r-4(r+5)=5(2r-5)-15 | | 8+8v=10v | | 12+x=10+3 | | -3x²+4x+75=0 | | (3x−1)2+(4x+1)2=(5x−1)(5x+1)+1 | | 24-2x=90 | | h(Z)=7Z+6 | | -10r=18-5r | | 17/8=k/5 | | 2x-3x+7-8x-14+30x=0 | | 2x-3x²+7-8x²-14+30x³=0 | | 24(c-54)=22800 | | 20(m-6)=0 | | 3x+4(x-8)=3(x-8) | | 20(m+6)=0 | | m=-3(0,4) | | |15x+5|=10 | | 11x+19x-9+5=2x+5-9 | | (17b-3)-8(2b+3)=-2 | | 5w+9=5w+30 | | 5w+9=5w-9 | | 5w+9=5w+20 | | 10/x-4=4/3 | | 5w+9=5w+10 |