1/8x+21+3x=12x-4

Simple and best practice solution for 1/8x+21+3x=12x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/8x+21+3x=12x-4 equation:



1/8x+21+3x=12x-4
We move all terms to the left:
1/8x+21+3x-(12x-4)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We add all the numbers together, and all the variables
3x+1/8x-(12x-4)+21=0
We get rid of parentheses
3x+1/8x-12x+4+21=0
We multiply all the terms by the denominator
3x*8x-12x*8x+4*8x+21*8x+1=0
Wy multiply elements
24x^2-96x^2+32x+168x+1=0
We add all the numbers together, and all the variables
-72x^2+200x+1=0
a = -72; b = 200; c = +1;
Δ = b2-4ac
Δ = 2002-4·(-72)·1
Δ = 40288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40288}=\sqrt{16*2518}=\sqrt{16}*\sqrt{2518}=4\sqrt{2518}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-4\sqrt{2518}}{2*-72}=\frac{-200-4\sqrt{2518}}{-144} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+4\sqrt{2518}}{2*-72}=\frac{-200+4\sqrt{2518}}{-144} $

See similar equations:

| 4x-21=6x3 | | -3+5-3x=20 | | 3y-y^2-1.25=0 | | 0.5x-2.5+0.4x=2-0.75x | | 2(w+3)-10=6(2+3w) | | 2x=9.2 | | 7=d4 | | 42+3×6÷x=48 | | 3.4(4m-3)-(m-5)=-52 | | 4(3x+2)=-2(6x-4) | | 13-3p=4(p-2) | | -19=p-7-8 | | 4(a-2)-4=-8 | | 3/4x-1/4+14=12 | | K+6+2k=18 | | 8x+9=33+6x | | 7+8x-2x+10=1+8x | | V-3=-3+2v+8v | | 2x^2+8x-3=2x-9 | | 4x^2-80x+400=x+4 | | -5n+7n=2 | | 1.4/6+x/6=2.4 | | 2/2x-4-3/x-9=1 | | x/50=-2 | | K-3-8k=-10 | | -14=4x-3+7x | | 3=-3+2x+6 | | 2x+8-3x=8 | | -13u+12=16-14u | | 4545454545454545454/89=x | | 36363636363636363/89=x | | X3(2x-7)(3x+1)=(2x-5)(3x+2) |

Equations solver categories