1/8y+17=2y-118

Simple and best practice solution for 1/8y+17=2y-118 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/8y+17=2y-118 equation:



1/8y+17=2y-118
We move all terms to the left:
1/8y+17-(2y-118)=0
Domain of the equation: 8y!=0
y!=0/8
y!=0
y∈R
We get rid of parentheses
1/8y-2y+118+17=0
We multiply all the terms by the denominator
-2y*8y+118*8y+17*8y+1=0
Wy multiply elements
-16y^2+944y+136y+1=0
We add all the numbers together, and all the variables
-16y^2+1080y+1=0
a = -16; b = 1080; c = +1;
Δ = b2-4ac
Δ = 10802-4·(-16)·1
Δ = 1166464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1166464}=\sqrt{64*18226}=\sqrt{64}*\sqrt{18226}=8\sqrt{18226}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1080)-8\sqrt{18226}}{2*-16}=\frac{-1080-8\sqrt{18226}}{-32} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1080)+8\sqrt{18226}}{2*-16}=\frac{-1080+8\sqrt{18226}}{-32} $

See similar equations:

| 23x-12=13x-42 | | 0=p^2+p+2 | | 3(4x+5)-3x=24 | | y/3+5=8/3 | | 28x-5=3 | | 1(x+150)+3x=350 | | 1/3(2k-5)=3 | | -1/5(y+2)=4 | | 1(x+150)+3x=3500 | | 9.5+n=12 | | 6x-10=-1x+4 | | 4t-2+t2=6+t2 | | 3(x-6)+8=5x | | 1c-8=4-6c-4 | | 3(2+5m0=-54 | | 1/2y-4=-6 | | 3(6+-x)=27 | | -4r–2r=-18 | | X-6/4-1x=14 | | y2-24=5y | | 4/3x-1/3=×+7 | | 2(2x+3)-2(4x+5)=8 | | -3(5x-3)=36 | | X-6/4-1x=4 | | 6=8-7x-5-8x | | 10+8x=100 | | 3x-x^2=-40 | | 9x-3(x+2)=22-x | | 35=5a-1 | | q–93= 2 | | 26x-6/3=102 | | 9y-2y-3)=5(y-2)+2y |

Equations solver categories