If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/9(-2m-16)=1/3(2m+4)
We move all terms to the left:
1/9(-2m-16)-(1/3(2m+4))=0
Domain of the equation: 9(-2m-16)!=0
m∈R
Domain of the equation: 3(2m+4))!=0We calculate fractions
m∈R
(3m2/(9(-2m-16)*3(2m+4)))+(-9m0/(9(-2m-16)*3(2m+4)))=0
We calculate terms in parentheses: +(3m2/(9(-2m-16)*3(2m+4))), so:
3m2/(9(-2m-16)*3(2m+4))
We multiply all the terms by the denominator
3m2
We add all the numbers together, and all the variables
3m^2
Back to the equation:
+(3m^2)
We calculate terms in parentheses: +(-9m0/(9(-2m-16)*3(2m+4))), so:We get rid of parentheses
-9m0/(9(-2m-16)*3(2m+4))
We multiply all the terms by the denominator
-9m0
We add all the numbers together, and all the variables
-9m
Back to the equation:
+(-9m)
3m^2-9m=0
a = 3; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·3·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*3}=\frac{0}{6} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*3}=\frac{18}{6} =3 $
| 125=0.5/x | | x+6/4=2 | | 1/9(-2m-26)=1/3(2m+4) | | 23x=1000 | | 2^x-4=64 | | 50n=2000+40 | | 6(7-y)/14=8(5-y)/21 | | X2+5x-6=-3x-22 | | 9x+63=98 | | 2x+2+4x-20=180 | | 90+2x-5=180 | | 90+x+2x-5=180 | | x=(-10/4)^2 | | 5x+29+7x-11=180 | | 25(x)=50 | | 0.3(n-5)=)0.4-0.2(n-7) | | (x+2)-2(3-5x=6(x+3)-2 | | 63+6x=180 | | -2p-4=-12 | | 2.5x+2.6=5.2 | | 1/3s+15=26 | | 5+8p=7 | | b^-3=8/125 | | 11x+2=5x | | 64^7-x=0 | | 2/3(1+n)=1/2n | | 8(x+2)+2=8x+3 | | .4(x)=4080 | | X/2+x/9=9/2 | | (2x+150)/100+6=10 | | n(n+3)=108 | | 12=3x+x^2 |