If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/9(18y+27)-5=-1/2(2y-8)
We move all terms to the left:
1/9(18y+27)-5-(-1/2(2y-8))=0
Domain of the equation: 9(18y+27)!=0
y∈R
Domain of the equation: 2(2y-8))!=0We calculate fractions
y∈R
(2y2/(9(18y+27)*2(2y-8)))+(-(-9y1)/(9(18y+27)*2(2y-8)))-5=0
We calculate terms in parentheses: +(2y2/(9(18y+27)*2(2y-8))), so:
2y2/(9(18y+27)*2(2y-8))
We multiply all the terms by the denominator
2y2
We add all the numbers together, and all the variables
2y^2
Back to the equation:
+(2y^2)
We calculate terms in parentheses: +(-(-9y1)/(9(18y+27)*2(2y-8))), so:a = 2; b = 9; c = -5;
-(-9y1)/(9(18y+27)*2(2y-8))
We add all the numbers together, and all the variables
-(-9y)/(9(18y+27)*2(2y-8))
We multiply all the terms by the denominator
-(-9y)
We get rid of parentheses
9y
Back to the equation:
+(9y)
Δ = b2-4ac
Δ = 92-4·2·(-5)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-11}{2*2}=\frac{-20}{4} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+11}{2*2}=\frac{2}{4} =1/2 $
| k-6/2=2 | | 23=x/9+5 | | 1/9-4x=9 | | 2/3x-9=18 | | 18x^2-57x-60=0 | | 8(x+2)+6=4x+4(5+x) | | (9x+1)^2=36 | | 5=√√(x-2) | | 9x-(5x-13)=45 | | 6+2=-2(8x-4) | | 7-3x=-4x-13 | | x=x/9x-7 | | -4(2+4)=9-3z | | x-2(3x+6)=6-5x | | -3(x+6)-(3x-7)=-7x | | 5x+8=2x+22 | | 1/3x-6=-2/3x-8 | | -4z-6z=-2z+2-3z | | X/3x-9/x=1/2 | | 3t+16=t+412+t−212 | | j/3-10=-6 | | 2/3y+3/2=-1/12y | | 49x=180 | | 1+20=-3(6x-7) | | 34×3a=-7(1+a)+1 | | 12/3x=24 | | 4(5-p=8 | | -5(2w+11)=25 | | 2(7.5)-3c=1.5 | | 4(-3x+1)=11(x+1) | | -9x2+15x-4=0 | | 5p+2=-10p |