If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/9(2m-16)=1/3(2m+)
We move all terms to the left:
1/9(2m-16)-(1/3(2m+))=0
Domain of the equation: 9(2m-16)!=0
m∈R
Domain of the equation: 3(2m+))!=0We add all the numbers together, and all the variables
m∈R
1/9(2m-16)-(1/3(+2m))=0
We calculate fractions
(3m(+)/(9(2m-16)*3(+2m)))+(-9m2/(9(2m-16)*3(+2m)))=0
We calculate terms in parentheses: +(3m(+)/(9(2m-16)*3(+2m))), so:
3m(+)/(9(2m-16)*3(+2m))
We add all the numbers together, and all the variables
3m0/(9(2m-16)*3(+2m))
We multiply all the terms by the denominator
3m0
We add all the numbers together, and all the variables
3m
Back to the equation:
+(3m)
We calculate terms in parentheses: +(-9m2/(9(2m-16)*3(+2m))), so:We get rid of parentheses
-9m2/(9(2m-16)*3(+2m))
We multiply all the terms by the denominator
-9m2
We add all the numbers together, and all the variables
-9m^2
Back to the equation:
+(-9m^2)
-9m^2+3m=0
a = -9; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-9)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-9}=\frac{-6}{-18} =1/3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-9}=\frac{0}{-18} =0 $
| 9-6(4g-1)=g+15 | | 2x+x+29.5=180 | | W=(18x+6)/(6x+3) | | 2x+x+29.5+x=180 | | 222/m=74 | | 2(3-h)=-5h | | 88-n=55 | | 8-3n=1.5-2n | | 126=3n | | 6=-4(7+v)–2 | | 4x+5x-11+x=180 | | 7x+1=14x+7 | | 11=-9v+8v | | -8x+4x+3x=3(x-4) | | 6x+3=4x+4 | | 2.25x-4.6=3.5 | | -3(x+6)=2x-3 | | -4/5x+3=7/5 | | 5x-11+4x=180 | | 5x-11+4x+x=180 | | ∠A=6x−48∠B=4x+38 | | x+88+x-16+x=180 | | 12=1/2x-25 | | 37x+14=38x+7 | | x+88+x-16=180 | | 8x-2+12x-18=140 | | 13x-10+8x+1=180 | | 3-4x=7-8 | | 7+2=7n-5 | | 5a=5.8→a=8 | | 5xx5x=25x^2 | | -4y(3+y)-3y=2(3+y) |