1/9*x=360

Simple and best practice solution for 1/9*x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/9*x=360 equation:



1/9*x=360
We move all terms to the left:
1/9*x-(360)=0
Domain of the equation: 9*x!=0
x!=0/1
x!=0
x∈R
We multiply all the terms by the denominator
-360*9*x+1=0
Wy multiply elements
-3240x*x+1=0
Wy multiply elements
-3240x^2+1=0
a = -3240; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-3240)·1
Δ = 12960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12960}=\sqrt{1296*10}=\sqrt{1296}*\sqrt{10}=36\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{10}}{2*-3240}=\frac{0-36\sqrt{10}}{-6480} =-\frac{36\sqrt{10}}{-6480} =-\frac{\sqrt{10}}{-180} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{10}}{2*-3240}=\frac{0+36\sqrt{10}}{-6480} =\frac{36\sqrt{10}}{-6480} =\frac{\sqrt{10}}{-180} $

See similar equations:

| n-19=-15 | | 4(3a+1)=5(a+6) | | -3+n=-49 | | x-(x*(1/9))=360 | | -4(-5h-4=2(10h+8) | | 13=d-16 | | 9-x=-3x+1 | | x-1/9=360 | | 17=u+11 | | 44=4c+12 | | x*x=4x+21 | | X=-5y=5 | | X^+19x+24=396 | | b+(-11)=2 | | X=-1y=-1 | | (3/2x-3)=(2/x-5) | | 4d2-7=29 | | 4x*x+5x-6=0 | | -3/5=1/10+x | | 24=2h+6 | | 6v-9/3=v | | v-19=-5 | | 3x*x-13x-10=0 | | X=9y=11 | | n+(-18)=-26 | | 8(x+3)-4=4(2x-3) | | 28=3u+10 | | X=0y=-9 | | 3(4b-2)+3=24 | | 80-2x=8 | | v+(-11)=-13 | | 2^x=3.85 |

Equations solver categories