If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/9x+7x=9
We move all terms to the left:
1/9x+7x-(9)=0
Domain of the equation: 9x!=0We add all the numbers together, and all the variables
x!=0/9
x!=0
x∈R
7x+1/9x-9=0
We multiply all the terms by the denominator
7x*9x-9*9x+1=0
Wy multiply elements
63x^2-81x+1=0
a = 63; b = -81; c = +1;
Δ = b2-4ac
Δ = -812-4·63·1
Δ = 6309
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6309}=\sqrt{9*701}=\sqrt{9}*\sqrt{701}=3\sqrt{701}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-81)-3\sqrt{701}}{2*63}=\frac{81-3\sqrt{701}}{126} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-81)+3\sqrt{701}}{2*63}=\frac{81+3\sqrt{701}}{126} $
| -7=2h-9 | | 3(x+1)=-2(x-1)-4= | | 10x-7=63, | | -w+28=202 | | 14=2w+4 | | u/7-11=-7 | | x=0.6x+384= | | 4x°=(2x+18)° | | -16x^2+62x=0 | | 24+2x=7x+4 | | x=0.6x384 | | -18=4x=8 | | 17x+5(1-x)=8 | | -144=4(12-6r) | | 2(m-7)=10 | | w-17w+7w-17=1 | | 24+5y=-7(8y+4) | | 24=x/24 | | 16w+7w-17=1 | | -30=4+9(n-5) | | 24=4f-8 | | -4+4x+x2=0A) (x+2)2=4 B) (x+2)2=-4 C) (x+2)2=8 D) (x+2)2=-8 | | 7=3s+4 | | 5^x=1/19 | | 16+3x=x+20 | | 5^x-1=19 | | 22=3(8b-9) | | 4x-7=5x-12 | | 180x+16.666=x | | 2(8+7x)=72 | | -14v+-8v+10v=12 | | 7+3=n-9 |