1/n-5=9/n2-25

Simple and best practice solution for 1/n-5=9/n2-25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/n-5=9/n2-25 equation:


D( n )

n = 0

n^2 = 0

n = 0

n = 0

n^2 = 0

n^2 = 0

1*n^2 = 0 // : 1

n^2 = 0

n = 0

n in (-oo:0) U (0:+oo)

1/n-5 = 9/(n^2)-25 // - 9/(n^2)-25

1/n-(9/(n^2))-5+25 = 0

1/n-9*n^-2-5+25 = 0

n^-1-9*n^-2+20 = 0

t_1 = n^-1

1*t_1^1-9*t_1^2+20 = 0

t_1-9*t_1^2+20 = 0

DELTA = 1^2-(-9*4*20)

DELTA = 721

DELTA > 0

t_1 = (721^(1/2)-1)/(-9*2) or t_1 = (-721^(1/2)-1)/(-9*2)

t_1 = (721^(1/2)-1)/(-18) or t_1 = (721^(1/2)+1)/18

t_1 = (721^(1/2)-1)/(-18)

n^-1-((721^(1/2)-1)/(-18)) = 0

1*n^-1 = (721^(1/2)-1)/(-18) // : 1

n^-1 = (721^(1/2)-1)/(-18)

-1 < 0

1/(n^1) = (721^(1/2)-1)/(-18) // * n^1

1 = ((721^(1/2)-1)/(-18))*n^1 // : (721^(1/2)-1)/(-18)

-18*(721^(1/2)-1)^-1 = n^1

n = -18*(721^(1/2)-1)^-1

t_1 = (721^(1/2)+1)/18

n^-1-((721^(1/2)+1)/18) = 0

1*n^-1 = (721^(1/2)+1)/18 // : 1

n^-1 = (721^(1/2)+1)/18

-1 < 0

1/(n^1) = (721^(1/2)+1)/18 // * n^1

1 = ((721^(1/2)+1)/18)*n^1 // : (721^(1/2)+1)/18

18*(721^(1/2)+1)^-1 = n^1

n = 18*(721^(1/2)+1)^-1

n in { -18*(721^(1/2)-1)^-1, 18*(721^(1/2)+1)^-1 }

See similar equations:

| 4(m+3)=6m | | U=6(2n+30)+7(n+1) | | 13e-70=9e-10 | | 3(x^2+18x+81)=0 | | -(4x-3)=8 | | 2n-3y=9 | | 1/2*b-8=10 | | 19+9.7x=-3+8.6 | | 6857X/87 | | 7x+9y=7 | | 40+6x+2=90 | | 7+20x-3x^2=0 | | .25=8(x^2)+2x-5 | | 3x+12=4x-9 | | -17=-5y-2 | | .25=8 | | -(x-2)=27 | | 2x^2+4x=4x+8-3x^2-12 | | n/n-2=2/n-2-2/9 | | 5x-2x+4=x-2+6 | | -3c-4c=34 | | 2b+12=b+12 | | 29+x-24=180 | | 3/5*-35/24 | | 12x+9-4x-4=3x-78-x+30 | | x/5+x/6=22 | | -2x/9x-4=7/18 | | 451/2=1/2x-1/2 | | 6-(y+4)=2y-1 | | 5(3x-4)/25=4 | | x/13=0 | | 4x+4=-5+8x-x |

Equations solver categories