1/u-1/2.5u=1/5.

Simple and best practice solution for 1/u-1/2.5u=1/5. equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/u-1/2.5u=1/5. equation:



1/u-1/2.5u=1/5.
We move all terms to the left:
1/u-1/2.5u-(1/5.)=0
Domain of the equation: u!=0
u∈R
Domain of the equation: 2.5u!=0
u!=0/2.5
u!=0
u∈R
We add all the numbers together, and all the variables
1/u-1/2.5u-(+1/5.)=0
We get rid of parentheses
1/u-1/2.5u-1/5.=0
We calculate fractions
(-4u^2)/10u^2+10u/10u^2+(-25u)/10u^2=0
We multiply all the terms by the denominator
(-4u^2)+10u+(-25u)=0
We get rid of parentheses
-4u^2+10u-25u=0
We add all the numbers together, and all the variables
-4u^2-15u=0
a = -4; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·(-4)·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*-4}=\frac{0}{-8} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*-4}=\frac{30}{-8} =-3+3/4 $

See similar equations:

| 7(6–2x)–3(4x+1)=0 | | (6x-9)°=(5x+10)° | | X(10-x)=20 | | 8x+1=9x-6=180 | | −14=−7*((−5x−2)/8)−7 | | (x+29/13)-33/26=156/39 | | −14=−7((−5x−2)/8)−7 | | 9y/2=2 | | n×(n-3)=28 | | 0=8t-8t | | 9g+2=10+8g | | 7d-8=7d | | 3(4w-9)=14 | | 49x^2−84x+36=(7x−6) | | 49x^2−84x+36=(7x−6)() | | A=3p³=2 | | A=3p³2 | | 9x=15(7-6x) | | n3-1=0 | | 8x-3=2(3x) | | (2x+10)+x=95 | | 3x+5+10x-6=180 | | 1/3x-1/2=1/5x+1 | | 1.2x+13=1.4(5x-10) | | (2x)°=(x+30)°= | | (2x)°=(x+30)° | | 4x(3x+15)=90 | | 4b+7=15;2 | | 4x(3x+15)=180 | | 23p=45 | | 5n-4=n-1 | | (x+14)=2(4x-14) |

Equations solver categories