1/w+2=w-3/w

Simple and best practice solution for 1/w+2=w-3/w equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/w+2=w-3/w equation:



1/w+2=w-3/w
We move all terms to the left:
1/w+2-(w-3/w)=0
Domain of the equation: w!=0
w∈R
Domain of the equation: w)!=0
w!=0/1
w!=0
w∈R
We add all the numbers together, and all the variables
1/w-(+w-3/w)+2=0
We get rid of parentheses
1/w-w+3/w+2=0
We multiply all the terms by the denominator
-w*w+2*w+1+3=0
We add all the numbers together, and all the variables
2w-w*w+4=0
Wy multiply elements
-1w^2+2w+4=0
a = -1; b = 2; c = +4;
Δ = b2-4ac
Δ = 22-4·(-1)·4
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{5}}{2*-1}=\frac{-2-2\sqrt{5}}{-2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{5}}{2*-1}=\frac{-2+2\sqrt{5}}{-2} $

See similar equations:

| 0.66666667(2x+6)=3x+9 | | 3/4(8x-12)+2x=-11 | | b/3-2=-5/2 | | 2x=+713 | | 61-3x=93-12x | | x-8=59 | | |w-4|=11 | | 2x+3×+5=20 | | o/1.5=- | | 52631578947368421q+6400=2175q+1803 | | 3(5x+2)+12x=41-x | | 8x+3.5(x*1.5)=977 | | 3+0.66666667x+4=4x-0.2x | | -6(7s-3)=-21+8s | | -20=-6y+4(y-4) | | x-12=⁴8 | | 6+-4x=-4x+6 | | 25(a−23)=225 | | 3x+7=5x–13 | | M•(j-7)•3=25 | | 7n+63=4n-40 | | 2p+57=964p+11 | | f-13.2=28.9 | | -6m+12=27+1m | | 8+1x=22 | | -6m+12=27+m | | x+2=53 | | 15-12x=3+6x | | 8+5x=22 | | c3=1/64 | | 3000÷x=30 | | 150÷h=50 |

Equations solver categories