1/x+1/3x=1/60

Simple and best practice solution for 1/x+1/3x=1/60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/x+1/3x=1/60 equation:



1/x+1/3x=1/60
We move all terms to the left:
1/x+1/3x-(1/60)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/x+1/3x-(+1/60)=0
We get rid of parentheses
1/x+1/3x-1/60=0
We calculate fractions
(-9x^2)/1080x^2+1080x/1080x^2+360x/1080x^2=0
We multiply all the terms by the denominator
(-9x^2)+1080x+360x=0
We add all the numbers together, and all the variables
(-9x^2)+1440x=0
We get rid of parentheses
-9x^2+1440x=0
a = -9; b = 1440; c = 0;
Δ = b2-4ac
Δ = 14402-4·(-9)·0
Δ = 2073600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2073600}=1440$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1440)-1440}{2*-9}=\frac{-2880}{-18} =+160 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1440)+1440}{2*-9}=\frac{0}{-18} =0 $

See similar equations:

| (10x-1)(3+4x)=0 | | 23+2x-1/3=34+6x-1/12 | | -7t-3=60 | | 4x-70=9x-5 | | 3x2-2x+2=0 | | 3x2+11x+2=0 | | 8x-11=10x+6 | | -k^2+2k-5=-3 | | 4x/7+7=4 | | x/8=70 | | a-5/7=8/16 | | (70000-x)÷5+x÷10=9500 | | 6a+2=72 | | 45=p | | 6y+10=-3y-15 | | x=6*5 | | -11x-16=-15 | | 3z^2+9z+17=0 | | 2x2−(x−4)2=(3+x)2−15 | | (0,32+(7/8)*x)*100=731 | | b*b*b=32768 | | x+7·9=100 | | (2x-3)(7x+5)=0 | | 2x-(4-x)5=1 | | (x+7)•9=100 | | 4*(x*x)-9=0 | | t+3=-3(t-8)-5t | | t+3=3(t-8)-5t | | 100=(x+9) | | 5x−8=3x+14 | | X/2-1=5x/6+10/6 | | 3=(4a+5+9) |

Equations solver categories