If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/x+1/x+9=17/9x+21
We move all terms to the left:
1/x+1/x+9-(17/9x+21)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 9x+21)!=0We get rid of parentheses
x∈R
1/x+1/x-17/9x-21+9=0
We calculate fractions
(9x+1)/9x^2+(-17x)/9x^2-21+9=0
We add all the numbers together, and all the variables
(9x+1)/9x^2+(-17x)/9x^2-12=0
We multiply all the terms by the denominator
(9x+1)+(-17x)-12*9x^2=0
Wy multiply elements
-108x^2+(9x+1)+(-17x)=0
We get rid of parentheses
-108x^2+9x-17x+1=0
We add all the numbers together, and all the variables
-108x^2-8x+1=0
a = -108; b = -8; c = +1;
Δ = b2-4ac
Δ = -82-4·(-108)·1
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{31}}{2*-108}=\frac{8-4\sqrt{31}}{-216} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{31}}{2*-108}=\frac{8+4\sqrt{31}}{-216} $
| 5x-4x=-20 | | y·(0.8+1.1)=9.5 | | x+8+6x-5+2x-3=180 | | 8x+98=3x+140 | | 3(2x+5)-x=4x-4 | | 2-3(5+x)+6x=8x+2 | | 2/25x+x=24 | | 3x-12+2x=x-8 | | 8x+98=3x+40 | | 3/4(x+12)=x+5/2 | | 7x+5+2x+22=180 | | 2=-5/3u | | 2x^2+3x=–5 | | -2x-12=6 | | 4×t=8+5t | | 1.15x+3.12=11.72 | | 3x^2-42x-5=-42x+22 | | -1x7=+6x3 | | -1=-8x | | 3x^2+8x-52=0 | | -8(x-3)-30x=-6 | | 4x+6=3(4x+6) | | 2x-2x+1=5 | | 0.06(y−5)+0.16y=0.18y−0.01(70) | | 11x+5=8x-16 | | 3x+9x-6+4x=x | | 6–x=3–x. | | x+35=36x | | X-4/3=x-28/7 | | 5x-10+2x-5=111 | | 6=8x+18 | | x=2=-6 |